Description: |
Ginsenoside Rh1 has anti-obesity, anti-inflammatory, antiallergic, and anti-tumor activities, it may improve glucocorticoid efficacy in hormone-dependent diseases.
It inhibits MAPK and PI3K/Akt signaling pathways and downstream transcription factors such as NF-κB and AP-1, which play an important role in MMP gene expressions; it also inhibits IFN-gamma-induced JAK/STAT and ERK signaling pathways and downstream transcription factors, and thereby iNOS gene expression. |
Targets: |
MMP(e.g.TIMP) | MAPK | PI3K | Akt | NF-kB | AP-1 | PPAR | IL Receptor | TNF-α | NOS | NO | IFN-γ | STAT | JAK | ERK | COX | gp120/CD4 |
In vitro: |
Neurochem Int. 2013 Aug;63(2):80-6. | Protopanaxatriol ginsenoside Rh1 inhibits the expression of matrix metalloproteinases and the in vitro invasion/migration of human astroglioma cells.[Pubmed: 23684955 ] | Malignant gliomas are the most common and fatal brain tumors in adults. In particular, the strong invasiveness of glioma cells into the normal brain tissue makes eradication of glioma very difficult. Matrix metalloproteinases (MMPs) play a pivotal role in glioma invasion, and thus controlling MMP expression has been suggested as an important therapeutic target for brain tumors. In the present study, we investigated the effect of protopanaxatriol ginsenoside Rh1 on MMP expressions in human astroglioma U87MG and U373MG cells.
METHODS AND RESULTS:
RT-PCR analysis showed that Rh1 inhibits the mRNA expressions of MMP-1, -3, and -9 in PMA-stimulated U87MG and U373MG cells. Rh1 also suppressed the promoter activities of MMP-1, -3 and -9. The ELISA, Western blot, and zymographic analyses revealed that Rh1 inhibits the protein expression and/or enzymatic activity of MMP-1, -3 and -9. In accordance with the strong inhibitory effects of Rh1 on MMPs, Rh1 efficiently inhibited the invasion and migration of U87MG and U373MG glioma cells as demonstrated by Matrigel invasion assay and wound healing assay. Further mechanistic studies revealed that Rh1 inhibits MAPK and PI3K/Akt signaling pathways and downstream transcription factors such as NF-κB and AP-1, which play an important role in MMP gene expressions.
CONCLUSIONS:
The data collectively suggest that ginsenoside Rh1 may have a therapeutic potential for malignant gliomas. | Fitoterapia. 2011 Sep;82(6):911-9. | Ginsenoside Rh1 inhibits the invasion and migration of THP-1 acute monocytic leukemia cells via inactivation of the MAPK signaling pathway.[Pubmed: 21605636] | Ginsenoside Rh1 has been reported to possess antiallergic and anti-inflammatory activities, but its effects on monocytes remain to be determined.
METHODS AND RESULTS:
Herein, we investigated the effects of Rh1 on the expression of MCP-1 and CCR2, activation of MAPK signaling, and chemotaxis of monocytes. Treatment of Rh1 decreased the levels of MCP-1 and CCR2 and the expression of VLA5 and activated β1 integrin on the cell surface, and attenuated the phosphorylation of MAPKs.
CONCLUSIONS:
Based on these results, the inhibitory effects of Rh1 on monocyte function should be regarded as a promising new anti-inflammatory response with a potential therapeutic role against inflammation-dependent diseases. |
|
In vivo: |
Biol Pharm Bull. 2013;36(1):102-7. | Ginsenoside Rh1 ameliorates high fat diet-induced obesity in mice by inhibiting adipocyte differentiation.[Pubmed: 23302642] | Ginseng (the root of Panax ginseng C. A. MEYER), which contains protopanaxadiols and protopanaxatriols as its main constituents, has been used for many disorders, such as cancer, diabetes, inflammation, and hyperlipidemia. Of these ginsenosides, protopanaxadiol ginsenoside Rh2 alone is reported to inhibit adipogenesis in 3T3-L1 in vitro. Therefore, we investigated the effect of protopanaxatriol ginsenoside Rh1 on adipogenesis in 3T3-L1 cells and high fat diet-induced obesity (DIO) mice.
METHODS AND RESULTS:
Treatment with ginsenoside Rh1 inhibited adipogenesis, as evidenced by Oil red O staining and lipid droplet extraction assay. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that ginsenoside Rh1 decreased the expressions of peroxisome proliferator-activated receptor (PPAR)-γ, CCAAT/enhancer-binding protein (C/EBP)-α, fatty acid synthase, and adipocyte fatty acid-binding protein. Oral administration of ginsenoside Rh1 (20 mg/kg) suppressed body and epididymal fat weight gains and plasma triglyceride level in DIO mice. Ginsenoside Rh1 also inhibited the expressions of PPAR-γ, C/EBP-α, fatty acid synthase, adipocyte fatty acid-binding protein, as well as F4/80, CD68, tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in DIO mice by real time PCR analysis.
CONCLUSIONS:
Based on these findings, ginsenoside Rh1 may ameliorate obesity, by inhibiting adipocyte differentiation and inflammation. | Int Arch Allergy Immunol. 2004 Feb;133(2):113-20. | Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities.[Pubmed: 14739579 ] | Ginseng (the root of Panax ginseng C.A. Meyer, Araliaceae) has been reported to possess various biological activities, including anti-inflammatory and antitumor actions. In this study, we investigated the antiallergic activity of ginsenosides isolated from ginseng.
METHODS AND RESULTS:
We isolated ginsenosides by silica gel column chromatography and examined their in vitro and in vivo antiallergic effect on rat peritoneal mast cells and on IgE-induced passive cutaneous anaphylaxis (PCA) in mice. The in vitro anti-inflammatory activity of ginsenoside Rh1 (Rh1) in RAW264.7 cells was investigated.
Rh1 potently inhibited histamine release from rat peritoneal mast cells and the IgE-mediated PCA reaction in mice. The inhibitory activity of Rh1 (87% inhibition at 25 mg/kg) on the PCA reaction was found to be more potent than that of disodium cromoglycate (31% inhibition at 25 mg/kg); Rh1 was also found to have a membrane-stabilizing action as revealed by differential scanning calorimetry. It also inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression in RAW 264.7 cells, and the activation of the transcription factor, NF-kappaB, in nuclear fractions.
CONCLUSIONS:
The antiallergic action of Rh1 may originate from its cell membrane-stabilizing and anti-inflammatory activities, and can improve the inflammation caused by allergies.
CONCLUSION:
The antiallergic action of Rh1 may originate from its cell membrane-stabilizing and anti-inflammatory activities, and can improve the inflammation caused by allergies. |
|