Info: Read More
  • 中药标准品生产商,产品定制服务
  • 山奈苷

    Kaempferitrin

    山奈苷
    产品编号 CFN98756
    CAS编号 482-38-2
    分子式 = 分子量 C27H30O14 = 578.5
    产品纯度 >=98%
    物理属性 Yellow powder
    化合物类型 Flavonoids
    植物来源 The roots of Kaempferia galangal L.
    ChemFaces的产品在影响因子大于5的优秀和顶级科学期刊中被引用
    提供自定义包装
    产品名称 产品编号 CAS编号 包装 QQ客服
    山奈苷 CFN98756 482-38-2 10mg QQ客服:1413575084
    山奈苷 CFN98756 482-38-2 20mg QQ客服:1413575084
    山奈苷 CFN98756 482-38-2 50mg QQ客服:1413575084
    山奈苷 CFN98756 482-38-2 100mg QQ客服:1413575084
    存储与注意事项
    1. 在您收到产品后请检查产品。如无问题,请将产品存入冰霜并且样品瓶保持密封,产品可以存放长达24个月(2-8摄氏度)。

    2. 只要有可能,产品溶解后,您应该在同一天应用于您的实验。 但是,如果您需要提前做预实验,或者需要全部溶解,我们建议您将溶液以等分试样的形式存放在-20℃的密封小瓶中。 通常,这些可用于长达两周。 使用前,打开样品瓶前,我们建议您将产品平衡至室温至少1小时。

    3. 需要更多关于溶解度,使用和处理的建议? 请发送电子邮件至:service@chemfaces.com
    订购流程
  • 1. 在线订购
  • 请联系我们QQ客服

  • 2. 电话订购
  • 请拨打电话:
    027-84237683 或 027-84237783

  • 3. 邮件或传真订购
  • 发送电子邮件到: manager@chemfaces.com 或
    发送传真到:027-84254680

  • 提供订购信息
  • 为了方便客户的订购,请需要订购ChemFaces产品的客户,在下单的时候请提供下列信息,以供我们快速为您建立发货信息。
  •  
  • 1. 产品编号(CAS No.或产品名称)
  • 2. 发货地址
  • 3. 联系方法 (联系人,电话)
  • 4. 开票抬头 (如果需要发票的客户)
  • 5. 发票地址(发货地址与发票地址不同)
  • 发货时间
    1. 付款方式为100%预付款客户,我们将在确认收到货款后当天或1-3个工作日发货。

    2. 付款方式为月结的客户,我们承诺在收到订单后当天或1-3个工作日内发货。

    3. 如果客户所需要的产品,需要重新生产,我们有权告知客户,交货时间需要延期。
    ChemFaces的产品在许多优秀和顶级科学期刊中被引用

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.
    IF=36.216(2019)

    PMID: 29328914

    Cell Metab. 2020 Mar 3;31(3):534-548.e5.
    doi: 10.1016/j.cmet.2020.01.002.
    IF=22.415(2019)

    PMID: 32004475

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.
    IF=14.548(2019)

    PMID: 29149595

    ACS Nano. 2018 Apr 24;12(4): 3385-3396.
    doi: 10.1021/acsnano.7b08969.
    IF=13.903(2019)

    PMID: 29553709

    Nature Plants. 2016 Dec 22;3: 16206.
    doi: 10.1038/nplants.2016.205.
    IF=13.297(2019)

    PMID: 28005066

    Sci Adv. 2018 Oct 24;4(10): eaat6994.
    doi: 10.1126/sciadv.aat6994.
    IF=12.804(2019)

    PMID: 30417089
    我们的产品现已经出口到下面的研究机构与大学,并且还在增涨
  • University of Hertfordshire (United Kingdom)
  • Institute of Tropical Disease Universitas Airlangga (Indonesia)
  • University of Auckland (New Zealand)
  • Lund University (Sweden)
  • Cancer Research Initatives Foundation(CARIF) (Malaysia)
  • Utah State University (USA)
  • Chang Gung University (Taiwan)
  • Universidad Veracuzana (Mexico)
  • FORTH-IMBB (Greece)
  • National Chung Hsing University (Taiwan)
  • Instituto Politécnico de Bragan?a (Portugal)
  • Griffith University (Australia)
  • Sant Gadge Baba Amravati University (India)
  • Korea Food Research Institute(KFRI) (Korea)
  • More...
  • 国外学术期刊发表的引用ChemFaces产品的部分文献
  • Journal of Ginseng Research2023, 12.004.
  • Processes2022, 10(10), 2008.
  • Food Chem.2021, 360:130063.
  • Cell Rep.2022, 39(1):110643.
  • J Integr Plant Biol.2023, 13564.
  • Plant Science2024, 338:111914
  • BMC Microbiol.2019, 19(1):78
  • Phytomedicine.2023, 114:154813.
  • Molecules.2017, 22(6)
  • Cell Chem Biol.2019, 26(1):27-34
  • Sci Rep. 2017, 17332(7)
  • Mol Cells.2015, 38(9):765-72
  • Foods.2023, 12(6):1130.
  • Konkuk University2023, 29:4634721
  • Molecules.2021, 26(16):4722.
  • Heliyon.2022, e12337.
  • Neuropharmacology2019, 151437
  • FARMACIA2023, Vol.71,3.
  • Journal of Life Science2018, 917-922
  • J Biomol Struct Dyn.2023, 1-21.
  • Phytother Res.2015, 29(7):1088-96
  • Food Chem.2018, 262:78-85
  • J Nat Prod.2019, 82(4):1002-1008
  • ...
  • 生物活性
    Description: Kaempferitrin exerts immunostimulatory, antidepressant-like , antiosteoporotic , cytotoxic and antitumor effects, the general mechanisms include cell cycle arrest in G1 phase and apoptosis via intrinsic pathway in a caspase dependent pathway. Kaempferitrin is an acute lowering effect on blood glucose in diabetic rats and to stimulate the glucose uptake percentile, as efficiently as insulin in muscle from normal rats.
    Targets: PI3K | PKC | MEK | p38MAPK | GLUT | NO | 5-HT Receptor | Akt
    In vitro:
    J Ethnopharmacol. 2013 Jun 21;148(1):337-40.
    Kaempferitrin induces immunostimulatory effects in vitro.[Pubmed: 23588095]
    Justicia spicigera is a plant used as immunostimulatory in Mexican traditional medicine. Recently, we showed that Justicia spicigera extracts exerted immunostimulatory effects and the major component of this extract was Kaempferitrin (KM). This work shows a correlation between the medical traditional use of Justicia spicigera and Kaempferitrin, its active compound.
    METHODS AND RESULTS:
    The in vitro immunostimulatory effects of Kaempferitrin were evaluated on the proliferation of murine splenocytes and macrophages, and human peripheral blood mononuclear cells (PBMC). The effects of Kaempferitrin on NO production, lysosomal enzyme activity and neutral red uptake were assayed in murine macrophages RAW 264.7. The effects of Kaempferitrin on the NK cell activity were also assayed. Kaempferitrin at 25μM, the highest concentration tested, increased the proliferation of murine macrophages (23%) and splenocytes (17%), and human PBMC (24%) in the absence of lipopolysaccharides (LPS), compared to untreated cells. Kaempferitrin also stimulated the pinocytosis (25%) and lysosomal enzyme activity (57%) in murine macrophages with a similar potency than LPS 1μg/ml. In addition, Kaempferitrin induced the NK cell activity (11%).
    CONCLUSIONS:
    Kaempferitrin exerts immunostimulatory effects on immune responses mediated by splenocytes, macrophages, PBMC and NK cells.
    J Ethnopharmacol. 2013 Jan 30;145(2):476-89.
    Kaempferitrin induces apoptosis via intrinsic pathway in HeLa cells and exerts antitumor effects.[Pubmed: 23211658]
    Justicia spicigera is used for the empirical treatment of cervical cancer in Mexico. Recently, we showed that Justicia spicigera extracts exerted cytotoxic and antitumoral effects and the major component of this extract was Kaempferitrin (KM).
    METHODS AND RESULTS:
    The cytotoxic and apoptotic effect of Kaempferitrin on human cancer cells and human nontumorigenic cells were evaluated using MTT and TUNEL assays, and Annexin V/Propidium iodide detection by flow cytometry. The effect of Kaempferitrin on cell cycle was analyzed by flow cytometry with propidium iodide. The apoptotic and cell cycle effects were also evaluated by western blot analysis. Also, different doses of Kaempferitrin were injected intraperitoneally daily into athymic mice bearing tumors of HeLa cells during 32 days. The growth and weight of tumors were measured. RESULTS: Kaempferitrin induces high cytotoxic effects in vitro and in vivo against HeLa cells. The general mechanisms by which Kaempferitrin induces cytotoxic effects include: cell cycle arrest in G1 phase and apoptosis via intrinsic pathway in a caspase dependent pathway. Also, Kaempferitrin exerts chemopreventive and antitumor effects.
    CONCLUSIONS:
    Kaempferitrin exerts cytotoxic and antitumor effects against HeLa cells.
    Chem Biol Interact. 2004 Oct 15;149(2-3):89-96.
    Insulinomimetic effects of kaempferitrin on glycaemia and on 14C-glucose uptake in rat soleus muscle.[Pubmed: 15501431]
    Bauhinia forficata is one of the Bauhinia species mostly used as an antidiabetic herbal remedy in Brazil. Kaempferitrin (kaempferol-3,7-O-(alpha)-L-dirhamnoside) is the predominant flavonol glycoside found in the B. forficata leaves.
    METHODS AND RESULTS:
    The aim of the present work was to study the long-term effect of Kaempferitrin on glycaemia in diabetic rats, as well as the in vitro effect of this compound on 14C-D-glucose uptake and 14C-leucine incorporation into protein in normal rat soleus muscle. Kaempferitrin was found to have an acute lowering effect on blood glucose in diabetic rats and to stimulate the glucose uptake percentile, as efficiently as insulin in muscle from normal rats. This compound did not have any effect on glucosuria or on protein synthesis in muscle from normal and diabetic animals. However, the protein synthesis in the Kaempferitrin-treated groups was maintained at the same level as the respective controls.
    CONCLUSIONS:
    Thus, the hypoglycaemic effect and the prompt efficiency of the Kaempferitrin in stimulating [U-14C]-2-deoxi-D-glucose uptake in muscle -constitute the first evidence to indicate that the acute effect of this compound on blood glucose lowering may occur as a consequence of the altered intrinsic activity of the glucose transporter (Vmax or glucose transporters translocation?) not involving directly the synthesis of new carriers.
    In vivo:
    IUBMB Life. 2014 May;66(5):361-70.
    Antidiabetic activity of Sedum dendroideum: metabolic enzymes as putative targets for the bioactive flavonoid kaempferitrin.[Pubmed: 24817132]
    The aim of this study was to evaluate the antidiabetic potential of a leaf extract and flavonoids from Sedum dendroideum (SD). Additionally, our goals were to establish a possible structure/activity relationship between these flavonoids and to assess the most active flavonoid on the glycolytic enzyme 6-phosphofructo-1-kinase (PFK). SD juice (LJ), a flavonoid-rich fraction (BF), and separately five flavonoids were evaluated intraperitoneally for their acute hypoglycemic activity in normal and streptozotocin-induced diabetic mice.
    METHODS AND RESULTS:
    First, the major flavonoids kaempferol 3,7-dirhamnoside or kaempferitrin (1), kaempferol 3-glucoside-7-rhamnoside (2), and kaempferol 3-neohesperidoside-7-rhamnoside (3) were tested. Then, the monoglycosides kaempferol 7-rhamnoside (5) and kaempferol 3-rhamnoside (6) were assayed to establish their structure/activity relationship. The effect of 1 on PFK was evaluated in skeletal muscle, liver, and adipose tissue from treated mice. LJ (400 mg/kg), BF (40 mg/kg), and flavonoid 1 (4 mg/kg) reduced glycemia in diabetic mice (120 min) by 52, 53, and 61%, respectively. Flavonoids 2, 3, 5, and 6 were inactive or showed little activity, suggesting that the two rhamnosyl moieties in kaempferitrin are important requirements. Kaempferitrin enhanced the PFK activity chiefly in hepatic tissue, suggesting that it is able to stimulate tissue glucose utilization. This result is confirmed testing kaempferitrin on C2C12 cell line, where it enhanced glucose consumption, lactate production, and the key regulatory glycolytic enzymes. The hypoglycemic activity of kaempferitrin depends on the presence of both rhamnosyl residues in the flavonoid structure when intraperitoneally administered.
    CONCLUSIONS:
    Our findings show for the first time that a flavonoid is capable of stimulating PFK in a model of diabetes and that kaempferitrin stimulates glucose-metabolizing enzymes. This study contributes to the knowledge of the mechanisms by which this flavonoid exerts its hypoglycemic activity.
    制备储备液(仅供参考)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 1.7286 mL 8.643 mL 17.2861 mL 34.5722 mL 43.2152 mL
    5 mM 0.3457 mL 1.7286 mL 3.4572 mL 6.9144 mL 8.643 mL
    10 mM 0.1729 mL 0.8643 mL 1.7286 mL 3.4572 mL 4.3215 mL
    50 mM 0.0346 mL 0.1729 mL 0.3457 mL 0.6914 mL 0.8643 mL
    100 mM 0.0173 mL 0.0864 mL 0.1729 mL 0.3457 mL 0.4322 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    部分图片展示
    产品名称 产品编号 CAS编号 分子式 = 分子量 位单 联系QQ
    洋槐黄素; Robinetin CFN98780 490-31-3 C15H10O7 = 302.2 5mg QQ客服:215959384
    12-O-乙酰基迷迭香宁碱; 12-O-Acetylrosmarinine CFN00413 137760-53-3 C20H29NO7 = 395.45 5mg QQ客服:215959384
    甜菜碱; Betaine CFN99546 107-43-7 C5H11NO2 = 117.15 20mg QQ客服:3257982914
    苯甲酰芍药内酯苷; Benzoylalbiflorin CFN91579 184103-78-4 C30H32O12 = 584.6 10mg QQ客服:3257982914

    信息支持


    公司简介
    订购流程
    付款方式
    退换货政策

    ChemFaces提供的产品仅用于科学研究使用,不用于诊断或治疗程序。

    联系方式


    电机:027-84237783
    传真:027-84254680
    在线QQ: 1413575084
    E-Mail:manager@chemfaces.com

    湖北省武汉沌口经济技术开区车城南路83号1号楼第三层厂房


    ChemFaces为科学家,科研人员与企业提供快速的产品递送。我们通过瑞士SGS ISO 9001:2008质量体系认证天然化合物与对照品的研发和生产