In vitro: |
Can J Microbiol. 1982 Dec;28(12):1324-9. | The metabolism of cyclohexanecarboxylic acid and 3-cyclohexenecarboxylic acid by Pseudomonas putida.[Pubmed: 7168830] | METHODS AND RESULTS:
A strain of Pseudomonas putida grew rapidly on Cyclohexanecarboxylic acid as a sole source of carbon. A CoA-mediated beta-oxidation pathway was induced for the metabolism of the compound. The organism could not utilize 3-cyclohexenecarboxylic acid as a sole source of carbon for growth, but cells grown on gluconate in the presence of 3-cyclohexenecarboxylic acid were induced to metabolize Cyclohexanecarboxylic acid, benzoic acid, and catechol.
CONCLUSIONS:
Evidence is presented that 3-cyclohexenecarboxylic acid was slowly metabolized by a beta-oxidation pathway and by a pathway involving benzoic acid as an intermediate. For this strain of Pseudomonas putida, 3-cyclohexenecarboxylic acid acts as an oxidizable, nongrowth substrate and induces the metabolism of Cyclohexanecarboxylic acid and benzoic acid. | Mol Cell Biochem. 1985 Jul;67(2):171-9. | The aromatization of cyclohexanecarboxylic acid to hippuric acid: substrate specificity and species differences.[Pubmed: 4047028] |
METHODS AND RESULTS:
The ability to convert Cyclohexanecarboxylic acid to hippuric acid has been studied in liver from guinea pigs, rabbits, rats and mice using a gas chromatographic - mass spectrometric method employing selected ion monitoring. Guinea pig liver showed the highest activity, giving values double of those found in rabbit liver and five times those in rat liver. Only very weak activity was found in mouse liver. (Hydroxymethyl)cyclohexane, cyclohexanealdehyde and alpha-hydroxyethylcyclohexane, which are structurally related to Cyclohexanecarboxylic acid but lack the carboxyl group, were not aromatized by guinea pig liver mitochondria.
CONCLUSIONS:
This finding indicates that the carboxyl group is essential for aromatization. Absence of aromatization was also found with the homologs cyclohexaneacetic acid and cyclohexanepropionic acid and with the di-acids trans-1,2- and trans-1,4-cyclohexanedicarboxylic acid. The effect of a methyl group in Cyclohexanecarboxylic acid depended on its position. 2-Methyl-1-Cyclohexanecarboxylic acid was not aromatized, however the 3- and 4-methyl derivatives underwent aromatization and subsequent conjugation with glycine.
The rates of formation of m-methyl- and p-methylhippuric acid were 16% and 9%, respectively, of that found for hippuric acid from Cyclohexanecarboxylic acid (8.0 nmol/min/mg protein). |
|