Info: Read More
  • 中药标准品生产商,产品定制服务
  • 反式-2-己烯醛

    trans-2-Hexen-1-al

    反式-2-己烯醛
    产品编号 CFN70186
    CAS编号 6728-26-3
    分子式 = 分子量 C6H10O = 98.1
    产品纯度 >=98%
    物理属性 Oil
    化合物类型 Miscellaneous
    植物来源 The fruits of olive
    ChemFaces的产品在影响因子大于5的优秀和顶级科学期刊中被引用
    提供自定义包装
    产品名称 产品编号 CAS编号 包装 QQ客服
    反式-2-己烯醛 CFN70186 6728-26-3 10mg QQ客服:215959384
    反式-2-己烯醛 CFN70186 6728-26-3 20mg QQ客服:215959384
    反式-2-己烯醛 CFN70186 6728-26-3 50mg QQ客服:215959384
    反式-2-己烯醛 CFN70186 6728-26-3 100mg QQ客服:215959384
    存储与注意事项
    1. 在您收到产品后请检查产品。如无问题,请将产品存入冰霜并且样品瓶保持密封,产品可以存放长达24个月(2-8摄氏度)。

    2. 只要有可能,产品溶解后,您应该在同一天应用于您的实验。 但是,如果您需要提前做预实验,或者需要全部溶解,我们建议您将溶液以等分试样的形式存放在-20℃的密封小瓶中。 通常,这些可用于长达两周。 使用前,打开样品瓶前,我们建议您将产品平衡至室温至少1小时。

    3. 需要更多关于溶解度,使用和处理的建议? 请发送电子邮件至:service@chemfaces.com
    订购流程
  • 1. 在线订购
  • 请联系我们QQ客服

  • 2. 电话订购
  • 请拨打电话:
    027-84237683 或 027-84237783

  • 3. 邮件或传真订购
  • 发送电子邮件到: manager@chemfaces.com 或
    发送传真到:027-84254680

  • 提供订购信息
  • 为了方便客户的订购,请需要订购ChemFaces产品的客户,在下单的时候请提供下列信息,以供我们快速为您建立发货信息。
  •  
  • 1. 产品编号(CAS No.或产品名称)
  • 2. 发货地址
  • 3. 联系方法 (联系人,电话)
  • 4. 开票抬头 (如果需要发票的客户)
  • 5. 发票地址(发货地址与发票地址不同)
  • 发货时间
    1. 付款方式为100%预付款客户,我们将在确认收到货款后当天或1-3个工作日发货。

    2. 付款方式为月结的客户,我们承诺在收到订单后当天或1-3个工作日内发货。

    3. 如果客户所需要的产品,需要重新生产,我们有权告知客户,交货时间需要延期。
    ChemFaces的产品在许多优秀和顶级科学期刊中被引用

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.
    IF=36.216(2019)

    PMID: 29328914

    Cell Metab. 2020 Mar 3;31(3):534-548.e5.
    doi: 10.1016/j.cmet.2020.01.002.
    IF=22.415(2019)

    PMID: 32004475

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.
    IF=14.548(2019)

    PMID: 29149595

    ACS Nano. 2018 Apr 24;12(4): 3385-3396.
    doi: 10.1021/acsnano.7b08969.
    IF=13.903(2019)

    PMID: 29553709

    Nature Plants. 2016 Dec 22;3: 16206.
    doi: 10.1038/nplants.2016.205.
    IF=13.297(2019)

    PMID: 28005066

    Sci Adv. 2018 Oct 24;4(10): eaat6994.
    doi: 10.1126/sciadv.aat6994.
    IF=12.804(2019)

    PMID: 30417089
    我们的产品现已经出口到下面的研究机构与大学,并且还在增涨
  • Kyoto University (Japan)
  • University of Minnesota (USA)
  • Osmania University (India)
  • Stanford University (USA)
  • University of Malaya (Malaysia)
  • Charles Sturt University (Denmark)
  • Leibniz-Institut für Pflanzenbiochemie (IPB) (Germany)
  • Vin?a Institute of Nuclear Sciences (Serbia)
  • Chungnam National University (Korea)
  • University of Dicle (Turkey)
  • University of Virginia (USA)
  • Cancer Research Initatives Foundation(CARIF) (Malaysia)
  • University of Canterbury (New Zealand)
  • Centrum Menselijke Erfelijkheid (Belgium)
  • More...
  • 国外学术期刊发表的引用ChemFaces产品的部分文献
  • Arch Biochem Biophys.2018, 644:93-99
  • Pharmacognosy Magazine2018, 14(56):418-424
  • Int J Mol Sci.2019, 20(16):E4015
  • Int J Mol Sci.2023, 24(5):4505.
  • Appl. Sci.2022, 12(17), 8646.
  • Phys Chem Chem Phys.2018, 20(23):15986-15994
  • Pharmaceutics.2022, 14(5):945.
  • Applied Biological Chemistry2020, 63:37.
  • Food Research International2016, 106-113
  • Acta Physiologiae Plantarum2016, 38:7
  • J Biochem Mol Toxicol.2021, 35(5):e22731.
  • Antioxidants (Basel).2021, 10(10):1638.
  • The Pharmaceutical Society of Japan2018, 138(4):571-579
  • Molecules.2022, 27(13):4227.
  • Sci Rep.2020, 10:4495(2020)
  • Journal of Ginseng Research2021, 25 November
  • J Drug Target.2016, 24:1-28
  • BMC Plant Biol.2023, 23(1):239.
  • Front Pharmacol.2016, 7:460
  • South African J of Plant&Soil2018, 29-32
  • Cancers (Basel).2023, 15(1):37.
  • J Mass Spectrom.2022, 57(2):e4810.
  • Biotechnol Bioeng.2020, 117(7):2198-2208.
  • ...
  • 生物活性
    Description: Trans-2-hexen-1-al could used as a model molecule to screen for suitable sol-gel formulations.
    In vitro:
    Journal of Chemical Ecology, 2005, 31(3):481–495.
    Further Field Evaluation Of Synthetic Herbivore-Induced Plan Volatiles As Attractants For Beneficial Insects.[Reference: WebLink]

    METHODS AND RESULTS:
    Fifteen synthetic herbivore-induced plant volatiles (HIPVs) were field-tested for attractivity to beneficial insects in two experiments conducted in an open field and a hop yard in Washington State. Eleven insect species or families showed significant attraction to 13 HIPVs. The ladybeetle, Stethorus punctum picipes, was attracted to sticky traps baited with methyl salicylate (MeSA), cis-3-hexen-1-ol (He), and benzaldehyde (Be). The minute pirate bug, Orius tristicolor, was attracted to traps baited with MeSA, He, Be, and octyl aldehyde (Oa), and the bigeyed bug, Geocoris pallens, responded to MeSA, indole, and trans-2-hexen-1-al. The mymarid wasp, Anagrus daanei, was attracted to He, Oa, and farnesene. The chloropid fly, Thaumatomyia glabra, was highly attracted to methyl anthranilate. Insect families responding to HIPVs included Syrphidae (MeSA, He), Braconidae ((Z)-3-hexenyl acetate, He, cis-jasmone (J), methyl jasmonate (MeJA), methyl anthranilate (MeA)), Empididae (MeSA), Sarcophagidae (MeSA, Be, J, nonanal and geraniol), Tachinidae (Be), and Agromyzidae (MeSA). Micro-Hymenoptera (primarily parasitic wasp families) were attracted to MeSA, He, and indole.
    CONCLUSIONS:
    These results are discussed with respect to known properties and bioactivity of the tested HIPVs and to their potential as tools for recruiting natural enemies into agroecosystems.
    Journal of Economic Entomology, 01 Dec 2014, 107(6):2023-2029.
    Slow Release of Plant Volatiles Using Sol-Gel Dispensers.[Reference: WebLink]
    The black citrus aphid, also known as the tea aphid, (Toxoptera aurantii Boyer) attacks economically important crops, including tea (Camellia sinensis (L.) O. Kuntze).
    METHODS AND RESULTS:
    In the current study, silica sol-gel formulations were screened to find one that could carry and release C. sinensis plant volatiles to lure black citrus aphids in a greenhouse. The common plant volatile trans-2-hexen-1-al was used as a model molecule to screen for suitable sol-gel formulations. A zNose (Electronic Sensor Technology, Newbury Park, CA) transportable gas chromatograph was used to continuously monitor the volatile emissions. A sol-gel formulation containing tetramethyl orthosilicate and methyltrimethoxysilane in an 8:2 (vol:vol) ratio was selected to develop a slow-release dispenser. The half-life of trans-2-hexen-1-al in the sol-gel dispenser increased slightly with the volume of this compound in the dispenser.
    CONCLUSIONS:
    Ten different volatiles were tested in the sol-gel dispenser. Alcohols of 6-10 carbons had the longest half-lives (3.01-3.77 d), while esters of 6-12 carbons had the shortest (1.53-2.28 d). Release of these volatiles from the dispensers could not be detected by the zNose after 16 d (cis-3-hexenyl acetate) to 26 d (3,7-dimethylocta-1,6-dien-3-ol). In greenhouse experiments, trans-2-hexen-1-al and cis-3-hexen-1-ol released from the sol-gel dispensers attracted aphids for ≍17 d, and release of these volatiles could not be detected by the zNose after ≍24 d. The sol-gel dispensers performed adequately for the slow release of plant volatiles to trap aphids in the greenhouse.
    Current Biotechnology, 2017, 6(3):245-251.
    Saccharomyces cerevisiae as a Model for Screening the Effects of Volatile Organic Compounds[Reference: WebLink]
    Volatile organic compounds (VOCs) are gaseous at room temperature, readily dissipate throughout the environment, and may be of anthropogenic or biogenic origin. Despite an increasing scientific interest in the role VOCs play in interspecific interactions, there remains a limited understanding of the impact of VOCs on fungi living in a shared space. In this study, we aimed to determine the sensitivity of the model organism Saccharomyces cerevisiae (yeast) in response to exposure to VOCs, collectively or singularly produced by bacteria, fungi, plants, and in industrial processes, and containing various chemical functional groups.
    METHODS AND RESULTS:
    Using a serial dilution spot assay with yeast wild-type strain BY4741, 27 compounds were screened at 10 ppm for 48 hr to determine their impact on yeast growth. We found that gas-phase formaldehyde, three common microbial VOCs, 1-octanol, 1-octen-3-one, and trans-2-octenal, and a common plant VOC, trans-2-hexen-1-al, completely inhibited yeast growth at 10 ppm, while 1-octen-3-ol, 2-methylpropanal and benzene were significantly limiting. Additionally, we identified 2 common microbial VOCs, 3-methyl-1-butanol and 3-octanone, that significantly increased yeast growth.
    CONCLUSIONS:
    This study demonstrates that yeast provides a useful tool to study the effects of VOCs in shared spaces, serving as a model for other eukaryotic species in the built environment.
    制备储备液(仅供参考)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 10.1937 mL 50.9684 mL 101.9368 mL 203.8736 mL 254.842 mL
    5 mM 2.0387 mL 10.1937 mL 20.3874 mL 40.7747 mL 50.9684 mL
    10 mM 1.0194 mL 5.0968 mL 10.1937 mL 20.3874 mL 25.4842 mL
    50 mM 0.2039 mL 1.0194 mL 2.0387 mL 4.0775 mL 5.0968 mL
    100 mM 0.1019 mL 0.5097 mL 1.0194 mL 2.0387 mL 2.5484 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    部分图片展示
    产品名称 产品编号 CAS编号 分子式 = 分子量 位单 联系QQ
    δ3,2-羟基补骨脂酚; Delta3,2-Hydroxylbakuchiol CFN92803 178765-49-6 C18H24O2 = 272.4 5mg QQ客服:2056216494
    3-表南美楝羟基内酯; 3-Epicabraleahydroxylactone CFN98482 35833-72-8 C27H44O3 = 416.6 5mg QQ客服:3257982914
    姜酮; 4-(4-羟基-3-甲氧基苯基)-2-丁酮; Zingerone CFN99702 122-48-5 C11H14O3 = 194.23 20mg QQ客服:2056216494
    马兜铃对酮; Aristolindiquinone CFN93018 86533-36-0 C12H10O4 = 218.20 5mg QQ客服:1413575084

    信息支持


    公司简介
    订购流程
    付款方式
    退换货政策

    ChemFaces提供的产品仅用于科学研究使用,不用于诊断或治疗程序。

    联系方式


    电机:027-84237783
    传真:027-84254680
    在线QQ: 1413575084
    E-Mail:manager@chemfaces.com

    湖北省武汉沌口经济技术开区车城南路83号1号楼第三层厂房


    ChemFaces为科学家,科研人员与企业提供快速的产品递送。我们通过瑞士SGS ISO 9001:2008质量体系认证天然化合物与对照品的研发和生产