In vitro: |
Fitoterapia. 2015 Mar;101:162-8. | Tanshinone I induces cyclin D1 proteasomal degradation in an ERK1/2 dependent way in human colorectal cancer cells.[Pubmed: 25615593] | Tanshinone I (TAN I) as one of the naturally occurring diterpenes from Salvia miltiorrhizae Bunge (Danshen) has been reported to exhibit an anti-cancer activity. However, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to elucidate the biological mechanism by which TAN I may induce the inhibition of cell growth in human colorectal cancer cells.
METHODS AND RESULTS:
The treatment of TAN I suppressed the cell proliferation in HCT116 and SW480 cells and decreased the level of cyclin D1 protein. However, the mRNA level of cyclin D1 did not changed by TAN I treatment. Inhibition of proteasomal degradation by MG132 blocked TAN I-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with TAN I. In addition, phosphorylation of cyclin D1 at threonine-286 was increased by TAN I and a point mutation of threonine-286 to alanine attenuated TAN I-mediated cyclin D1 downregulation. Inhibition of ERK1/2 suppressed cyclin D1 phosphorylation and subsequent downregulation by TAN I. From these results, we suggest that TAN I-mediated cyclin D1 downregulation may result from proteasomal degradation through its ERK1/2-mediated phosphorylation of threonine-286.
CONCLUSIONS:
In conclusion, the current study provides new mechanistic link between TAN I, cyclin D1 downregulation and cell growth in human colorectal cancer cells. |
|
In vivo: |
J Ethnopharmacol. 2015 Apr 22;164:247-55. | Tanshinone I selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of Parkinson's disease.[Pubmed: 25666429] | Radix Salviae Miltiorrhizae, known as Danshen, is a well-known traditional Chinese herb which has been used extensively for the treatment of various diseases, including cardiovascular and cerebrovascular disease and neurodegenerative diseases for thousands of years. Tanshinone I is one of major bioactive flavonoids of Radix Salviae Miltiorrhizae. Modulation of microglial over-reaction may represent a therapeutic target to alleviate the progression of neurodegenerative diseases. Here, we tested the effect of Tanshinone I on neuro-inflammation and whether it can provide neuroprotection through inhibition of neuro-inflammation.
METHODS AND RESULTS:
The effects of Tanshinone I on the production and/or mRNA expression of pro-inflammatory and anti-inflammatory factors in lipopolysaccharide(LPS)-induced BV-2 microglia cells were tested by Griess reaction, enzyme-linked immunosorbent assay (Elisa) or real time polymerase chain reaction. Activation of nuclear factor κ B (NF-κB) was measured by the nuclear translocation p65 and DNA binding activity. A model of Parkinson׳s disease was established by treatment of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6 mice. The effect of Tanshinone I on the behavioral changes, dopamine and its metabolites levels, expression of tyrosine hydroxylase (TH) and IBA-1, production of cytokines in the midbrain were investigated by the rotarod test, high-performance liquid chromatography (HPLC)-ECD, immunohistochemistry and Elisa. 1-methyl-4-phenylpyridinium (MPP+) concentration was tested by HPLC. Liver toxicity was determined by biochemical assay and histochemistry.
We found that the productions and/or expressions of several pro-inflammatory M1 factors such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 were highly suppressed by Tanshinone I in LPS-induced microglia. Interestingly, it did not affect the enhancement of expression of some anti-inflammatory M2 microglia markers, including IL-10, IL-1 receptor antagonist (IL-1Ra) and Cox-2. But it could significantly inhibit LPS-induced granulocyte colony-stimulating factor (G-CSF) expression. Tanshinone I could also inhibit LPS-induced NF-κB activation in microglia. Furthermore, it improved motor functions, normalized striatal neurotransmitters, and provided dopaminergic neuronal protection in MPTP-intoxicated mice. In vivo results also indicated that Tanshinone I could modulate MPTP-induced microglial activation, attenuated the increase of TNF-α, reserved the increase of IL-10 concentrain of MPTP-intoxicated mice. Tanshinone I does not alter MPTP toxic metabolite (MPP+) concentration. Oral administration of Tanshinone I at 10mg/kg daily for 2 weeks did not show liver toxicity.
CONCLUSIONS:
Tanshinone I selectively suppressed pro-inflammatory M1 genes expression in activated microglia, interestingly, partially reserved anti-inflammatory M2 genes expression. It also could provide neuroprotection in a mouse model of Parkinson׳s disease. These data indicated that Tanshinone I could make the most of the beneficial side and minimize the detrimental side of activated microglia simultaneously, and provide neuroprotection by modulating the immune response of microglia. | Environ Toxicol Pharmacol. 2013 Nov;36(3):850-7. | Tanshinone I protects mice from aristolochic acid I-induced kidney injury by induction of CYP1A.[Pubmed: 23981375] | Hepatic CYP1A especially CYP1A2 plays an important role in the reduction of aristolochic acid I (AAI) nephrotoxicity.
METHODS AND RESULTS:
In this study, we investigated the effects of tanshinone I, a strong inducer of Cyp1a, on the nephrotoxicity induced by AAI. Histopathology and blood biochemistry assays showed that tanshinone I could reduce AAI-induced acute kidney injury. Pharmacokinetics analysis revealed that tanshinone I markedly decreased AUC of AAI in plasma and the content of AAI in both liver and kidney, indicating the enhancement of AAI metabolism. Real-time PCR and Western blot analysis confirmed that tanshinone I effectively increased the mRNA and protein levels of hepatic CYP1A1 and CYP1A2 in vivo. Luciferase assay showed that tanshinone I strongly increased the transcriptional activity of CYP1A1 and CYP1A2 in the similar extent.
CONCLUSIONS:
In summary, our data suggested that tanshinone I facilitated the metabolism of AAI and prevented AAI-induced kidney injury by induction of hepatic CYP1A 1/2 in vivo. |
|