Info: Read More
  • 中药标准品生产商,产品定制服务
  • 蔗糖

    Sucrose

    蔗糖
    产品编号 CFN98970
    CAS编号 57-50-1
    分子式 = 分子量 C12H22O11 = 342.3
    产品纯度 >=98%
    物理属性 Powder
    化合物类型 Saccharides
    植物来源 The roots of Euphorbia kansui
    ChemFaces的产品在影响因子大于5的优秀和顶级科学期刊中被引用
    提供自定义包装
    产品名称 产品编号 CAS编号 包装 QQ客服
    蔗糖 CFN98970 57-50-1 10mg QQ客服:2159513211
    蔗糖 CFN98970 57-50-1 20mg QQ客服:2159513211
    蔗糖 CFN98970 57-50-1 50mg QQ客服:2159513211
    蔗糖 CFN98970 57-50-1 100mg QQ客服:2159513211
    存储与注意事项
    1. 在您收到产品后请检查产品。如无问题,请将产品存入冰霜并且样品瓶保持密封,产品可以存放长达24个月(2-8摄氏度)。

    2. 只要有可能,产品溶解后,您应该在同一天应用于您的实验。 但是,如果您需要提前做预实验,或者需要全部溶解,我们建议您将溶液以等分试样的形式存放在-20℃的密封小瓶中。 通常,这些可用于长达两周。 使用前,打开样品瓶前,我们建议您将产品平衡至室温至少1小时。

    3. 需要更多关于溶解度,使用和处理的建议? 请发送电子邮件至:service@chemfaces.com
    订购流程
  • 1. 在线订购
  • 请联系我们QQ客服

  • 2. 电话订购
  • 请拨打电话:
    027-84237683 或 027-84237783

  • 3. 邮件或传真订购
  • 发送电子邮件到: manager@chemfaces.com 或
    发送传真到:027-84254680

  • 提供订购信息
  • 为了方便客户的订购,请需要订购ChemFaces产品的客户,在下单的时候请提供下列信息,以供我们快速为您建立发货信息。
  •  
  • 1. 产品编号(CAS No.或产品名称)
  • 2. 发货地址
  • 3. 联系方法 (联系人,电话)
  • 4. 开票抬头 (如果需要发票的客户)
  • 5. 发票地址(发货地址与发票地址不同)
  • 发货时间
    1. 付款方式为100%预付款客户,我们将在确认收到货款后当天或1-3个工作日发货。

    2. 付款方式为月结的客户,我们承诺在收到订单后当天或1-3个工作日内发货。

    3. 如果客户所需要的产品,需要重新生产,我们有权告知客户,交货时间需要延期。
    ChemFaces的产品在许多优秀和顶级科学期刊中被引用

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.
    IF=36.216(2019)

    PMID: 29328914

    Cell Metab. 2020 Mar 3;31(3):534-548.e5.
    doi: 10.1016/j.cmet.2020.01.002.
    IF=22.415(2019)

    PMID: 32004475

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.
    IF=14.548(2019)

    PMID: 29149595

    ACS Nano. 2018 Apr 24;12(4): 3385-3396.
    doi: 10.1021/acsnano.7b08969.
    IF=13.903(2019)

    PMID: 29553709

    Nature Plants. 2016 Dec 22;3: 16206.
    doi: 10.1038/nplants.2016.205.
    IF=13.297(2019)

    PMID: 28005066

    Sci Adv. 2018 Oct 24;4(10): eaat6994.
    doi: 10.1126/sciadv.aat6994.
    IF=12.804(2019)

    PMID: 30417089
    我们的产品现已经出口到下面的研究机构与大学,并且还在增涨
  • National Hellenic Research Foundation (Greece)
  • Universit?t Basel (Switzerland)
  • Centrum Menselijke Erfelijkheid (Belgium)
  • The Ohio State University (USA)
  • Johannes Gutenberg University Mainz (JGU) (Germany)
  • Universidade de Franca (Brazil)
  • University of Maryland (USA)
  • Massachusetts General Hospital (USA)
  • Hamdard University (India)
  • Universidade Federal de Goias (UFG) (Brazil)
  • Wroclaw Medical University (Poland)
  • University of Toulouse (France)
  • Monash University Sunway Campus (Malaysia)
  • Melbourne University (Australia)
  • More...
  • 国外学术期刊发表的引用ChemFaces产品的部分文献
  • Molecules.2020, 25(17):3783.
  • Journal of Natural Remedies2024, 24(3):555–575.
  • Korean J. Medicinal Crop Sci.2023, 31(6):388-395.
  • Mol Med Rep.2024, 29(2):26.
  • Separations2021, 8(6),80.
  • Toxins (Basel).2019, 11(10):E575
  • Int J Mol Sci.2023, 24(18):14077.
  • J of Advanced Scientific R.2020, 11(3), p109-120.
  • Cell Mol Biol (Noisy-le-grand).2023, 69(15):167-173.
  • J Nat Med.2020, 74(1):65-75
  • Genes Genomics.2020, 10.1007
  • Food Chemistry: X.2022, 2022.100270
  • Acta Pharm Sin B.2015, 5(4):323-9.
  • Phys Chem Chem Phys.2018, 20(23):15986-15994
  • Food Chem.2020, 313:126079
  • J Pharmaceutical and Biomedical Analysis2022, 114631.
  • Plant Growth Regulation2020, 90(2):383-392
  • J Ethnopharmacol.2024, 326:117902.
  • PLoS One.2018, 13(3):e0193386
  • Indian J Pharm Sci.2022, 84(3):144-151
  • Pharmacia2024, 71:1-9.
  • Food Chem.2019, 274:345-350
  • Molecules.2024, 29(5):1171.
  • ...
  • 生物活性
    Description: Sucrose is used extensively as a food and a sweetener, it is the most efficient large-scale crop capable of supplying sufficient carbon substrate, in the form of Sucrose, needed during fermentative feedstock production.
    In vitro:
    Appl Microbiol Biotechnol. 2014 Nov;98(21):9033-44.
    Escherichia coli W shows fast, highly oxidative sucrose metabolism and low acetate formation.[Pubmed: 25125039]
    Sugarcane is the most efficient large-scale crop capable of supplying sufficient carbon substrate, in the form of sucrose, needed during fermentative feedstock production. However, sucrose metabolism in Escherichia coli is not well understood because the two most common strains, E. coli K-12 and B, do not grow on sucrose.
    METHODS AND RESULTS:
    Here, using a sucrose utilizing strain, E. coli W, we undertake an in-depth comparison of sucrose and glucose metabolism including growth kinetics, metabolite profiling, microarray-based transcriptome analysis, labelling-based proteomic analysis and (13)C-fluxomics. While E. coli W grew comparably well on sucrose and glucose integration of the omics, datasets showed that during growth on each carbon source, metabolism was distinct. The metabolism was generally derepressed on sucrose, and significant flux rearrangements were observed in central carbon metabolism. These included a reduction in the flux of the oxidative pentose phosphate pathway branch, an increase in the tricarboxylic acid cycle flux and a reduction in the glyoxylate shunt flux due to the dephosphorylation of isocitrate dehydrogenase. But unlike growth on other sugars that induce cAMP-dependent Crp regulation, the phosphoenol-pyruvate-glyoxylate cycle was not active on sucrose. Lower acetate accumulation was also observed in sucrose compared to glucose cultures. This was linked to induction of the acetate catabolic genes actP and acs and independent of the glyoxylic shunt.
    CONCLUSIONS:
    Overall, the cells stayed highly oxidative. In summary, sucrose metabolism was fast, efficient and led to low acetate accumulation making it an ideal carbon source for industrial fermentation with E. coli W.
    Int J Oral Sci. 2014 Dec;6(4):195-204.
    Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose.[Pubmed: 25059251]
    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates.
    METHODS AND RESULTS:
    S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control.
    CONCLUSIONS:
    Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the cariogenic potential of S. mutans biofilms.
    制备储备液(仅供参考)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 2.9214 mL 14.6071 mL 29.2141 mL 58.4283 mL 73.0353 mL
    5 mM 0.5843 mL 2.9214 mL 5.8428 mL 11.6857 mL 14.6071 mL
    10 mM 0.2921 mL 1.4607 mL 2.9214 mL 5.8428 mL 7.3035 mL
    50 mM 0.0584 mL 0.2921 mL 0.5843 mL 1.1686 mL 1.4607 mL
    100 mM 0.0292 mL 0.1461 mL 0.2921 mL 0.5843 mL 0.7304 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    部分图片展示
    产品名称 产品编号 CAS编号 分子式 = 分子量 位单 联系QQ
    麦芽糖; Maltose CFN91657 69-79-4 C12H22O11 = 342.30 20mg QQ客服:1413575084
    异麦芽糖; Isomaltose CFN91551 499-40-1 C12H22O11 = 342.3 20mg QQ客服:2056216494
    木二糖; Xylobiose CFN91630 6860-47-5 C10H18O9 = 282.24 5mg QQ客服:1413575084
    蔗糖; Sucrose CFN98970 57-50-1 C12H22O11 = 342.3 20mg QQ客服:2056216494
    D-海藻糖; D-Trehalose CFN91716 99-20-7 C12H22O11 = 342.30 20mg QQ客服:1413575084
    五水棉子糖; Raffinose CFN90425 17629-30-0 C18H32O16(5H2O) = 594.51 20mg QQ客服:215959384
    耐斯糖; Nystose CFN98574 13133-07-8 C24H42O21 = 666.58 20mg QQ客服:2159513211
    水苏糖; Stachyose CFN90424 10094-58-3 C24H42O21 = 666.57 20mg QQ客服:215959384
    阿卡波糖; Acarbose CFN91170 56180-94-0 C25H43NO18 = 645.6 20mg QQ客服:2056216494
    麦芽三糖; Maltotriose CFN91550 1109-28-0 C18H32O16 = 504.4 20mg QQ客服:215959384

    信息支持


    公司简介
    订购流程
    付款方式
    退换货政策

    ChemFaces提供的产品仅用于科学研究使用,不用于诊断或治疗程序。

    联系方式


    电机:027-84237783
    传真:027-84254680
    在线QQ: 1413575084
    E-Mail:manager@chemfaces.com

    湖北省武汉沌口经济技术开区车城南路83号1号楼第三层厂房


    ChemFaces为科学家,科研人员与企业提供快速的产品递送。我们通过瑞士SGS ISO 9001:2008质量体系认证天然化合物与对照品的研发和生产