Description: |
Dehydroglyasperin C is a potent NAD(P)H:oxidoquinone reductase (NQO1) and phase 2 enzyme inducer. Dehydroglyasperin C possesses potent antioxidant, cancer chemopreventive, and neuroprotective activities, it has protective effects against chronic diseases caused by reactive oxygen species as well as potential as an antioxidant food additive. Dehydroglyasperin C protects neuronal cells against glutamate-induced oxidative injury through the induction of HO-1 expression, which is, in turn, activated maybe through Nrf2-Keap1 and PI3K/AKT signaling pathways.
|
In vitro: |
Neurochem Int. 2013 Dec;63(8):732-40. | Licorice-derived dehydroglyasperin C increases MKP-1 expression and suppresses inflammation-mediated neurodegeneration.[Pubmed: 24083986 ] | Recent studies have demonstrated that microglial hyperactivation-mediated neuroinflammation is involved in the pathogenesis of several neurodegenerative diseases. Thus, inhibiting microglial production of the neurotoxic mediator tumor necrosis factor-α (TNF-α) is considered a promising strategy to protect against neurodegeneration.
METHODS AND RESULTS:
Here, we investigated the inhibitory effect of licorice-derived dehydroglyasperin C (DGC) on lipopolysaccharide (LPS)-induced TNF-α production and inflammation-mediated neurodegeneration. We found that DGC pre-treatment attenuated TNF-α production in response to LPS stimulation of BV-2 microglia. DGC pre-treatment attenuated LPS-induced inhibitor of κB-α (IκB-α) and p65 phosphorylation and decreased the DNA binding activity of nuclear factor-κB (NF-κB). DGC pre-treatment also inhibited LPS-mediated phosphorylation of p38 mitogen-activated protein kinases (MAPKs) and extracellular signal-regulated kinase (ERK). Interestingly, DGC treatment of BV-2 microglia significantly increased MAPK phosphatase 1 (MKP-1) mRNA and protein expression, which is a phosphatase of p38 MAPK and ERK, suggesting that the DGC-mediated increase in MKP-1 expression might inhibit LPS-induced MAPKs and NF-κB activation and further TNF-α production. We also found that LPS-mediated microglial neurotoxicity can be attenuated by DGC. The addition of conditioned media (CM) from DGC- and LPS-treated microglia to neurons helped maintain healthy cell body and neurite morphology and increased the number of microtubule-associated protein 2-positive cells and the level of synaptophysin compared to treatment with CM from LPS-treated microglia.
CONCLUSIONS:
Taken together, these data suggest that DGC isolated from licorice may inhibit microglia hyperactivation by increasing MKP-1 expression and acting as a potent anti-neurodegenerative agent. | Nutr Res Pract. 2012 Dec;6(6):491-8. | Antioxidant activities of licorice-derived prenylflavonoids.[Pubmed: 23346298 ] | Glycyrrhiza uralensis (or licorice) is a widely used Oriental herbal medicine from which the phenylflavonoids dehydroglyasperin C (DGC), dehydroglyasperin D (DGD), and isoangustone A (IsoA) are derived.
METHODS AND RESULTS:
The purpose of the present study was to evaluate the antioxidant properties of DGC, DGD, and IsoA. The three compounds showed strong ferric reducing activities and effectively scavenged DPPH, ABTS(+), and singlet oxygen radicals. Among the three compounds tested, DGC showed the highest free radical scavenging capacity in human hepatoma HepG2 cells as assessed by oxidant-sensitive fluorescent dyes dichlorofluorescein diacetate and dihydroethidium bromide. In addition, all three compounds effectively suppressed lipid peroxidation in rat tissues as well as H(2)O(2)-induced ROS production in hepatoma cells.
CONCLUSIONS:
This study demonstrates that among the three phenylflavonoids isolated from licorice, DGC possesses the most potent antioxidant activity, suggesting it has protective effects against chronic diseases caused by reactive oxygen species as well as potential as an antioxidant food additive. | Br J Nutr. 2013 Aug 28;110(3):391-400. | Dehydroglyasperin C, a component of liquorice, attenuates proliferation and migration induced by platelet-derived growth factor in human arterial smooth muscle cells.[Pubmed: 23298457 ] | Liquorice is one of the botanicals used frequently as a traditional medicine in the West and in the East. Platelet-derived growth factor (PDGF)-BB is involved in the development of CVD by inducing abnormal proliferation and migration of vascular smooth muscle cells. In our preliminary study, dehydroglyasperin C (DGC), an active compound of liquorice, showed strong antioxidant activity.
Since phytochemicals with antioxidant activities showed beneficial effects on chronic inflammatory diseases, the present study aimed to investigate the effects of DGC on PDGF-induced proliferation and migration of human aortic smooth muscle cells (HASMC).
METHODS AND RESULTS:
Treatment of HASMC with DGC for 24 h significantly decreased PDGF-induced cell number and DNA synthesis in a dose-dependent manner without any cytotoxicity, as demonstrated by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide test and thymidine incorporation. Upon cell cycle analysis, DGC blocked the PDGF-induced progression through the G0/G1 to S phase of the cell cycle, and down-regulated the expression of cyclin-dependent kinase (CDK); 2, cyclin E, CDK4 and cyclin D1. Furthermore, DGC significantly attenuated PDGF-stimulated phosphorylation of PDGF receptor-b, phospholipase C-g1, AKT and extracellular-regulated kinase 1/2, and DGC inhibited cell migration and the dissociation of actin filaments by PDGF. In a rat vascular balloon injury model, DGC suppressed an excessive reduction in luminal diameters and neointimal formation compared with the control group.
CONCLUSIONS:
These results demonstrate the mechanistic basis for the prevention of CVD and the potential therapeutic properties of DGC. |
|