Description: |
Cyperotundone is a sesquiterpene isolated from Nagarmotha (Cyperus rotundus). Cyperotundone is an active constituent in Chuanxiong Rhizoma and Cyperi Rhizoma (CRCR) for treating migraine. In vitro studies demonstrated that Alpinia officinarum-Cyperus rotundus (HP G-X) and the corresponding single herbs significantly reduced IL-6, TNF-α, and COX-2. In vivo investigations indicated that HP G-X can protect the gastric mucosa of mice from ethanol-induced damage by inhibiting the inflammatory reaction and providing analgesia. It can also inhibit the expression of NF-κBp65, COX-2, and TRPV1 protein, reduce the concentrations of IL-6 and TNF-α, and relieve heat-induced pain. |
In vitro: |
Chem Biodivers . 2021 Oct;18(10):e2100214. | Chemical Constituents and Anti-Gastric Ulcer Activity of Essential Oils of Alpinia officinarum (Zingiberaceae), Cyperus rotundus (Cyperaceae), and Their Herbal Pair[Pubmed: 34402190] | The essential oil (EO) of the herbal pair (HP), Alpinia officinarum-Cyperus rotundus (HP G-X) has been conventionally used in traditional Chinese medicine (TCM) for 'warming the stomach' and relieving pain. However, its pharmacologically active compounds, as well as the mechanism of its anti-gastric ulcer properties remain unclear. In this study, the EOs obtained from HP G-X and its corresponding single herbs were analyzed using GC/MS. A total of 74, 56, and 85 compounds were detected in A. officinarum (GLJ), C. rotundus (XF), and HP G-X, accounting for 93.2 %, 89.5 %, and 92.0 % of the total content, respectively. GLJ mainly contains 1,8-cineol (22.0 %) and α-terpineol (11.8 %), whereas cyperenone (22.4 %) and cyperene (12.3 %) were the major constituents in XF. These four compounds were also detected in the HP G-X with relatively high composition as 11.8 %, 5.5 %, 11.8 %, and 10.6 %, respectively. Although no new compounds were detected in HP G-X, the relative concentration of some compounds increased, while others decreased or even disappeared. HP G-X showed the lowest toxicity (TC50 >800 μg/mL) against human gastric mucosal epithelial cells (GES-1) and had the best protective effect against ethanol-induced GES-1 cell damage compared to the individual herbs. In vitro studies demonstrated that HP G-X and the corresponding single herbs significantly reduced IL-6, TNF-α, and COX-2. In addition, in vivo investigations indicated that HP G-X can protect the gastric mucosa of mice from ethanol-induced damage by inhibiting the inflammatory reaction and providing analgesia. It can also inhibit the expression of NF-κBp65, COX-2, and TRPV1 protein, reduce the concentrations of IL-6 and TNF-α, and relieve heat-induced pain. This study further substantiated the traditional application of HP G-X against gastric ulcers through both in vivo and in vitro investigations. |
|
In vivo: |
Chem Biodivers . 2021 Oct;18(10):e2100214. | Chemical Constituents and Anti-Gastric Ulcer Activity of Essential Oils of Alpinia officinarum (Zingiberaceae), Cyperus rotundus (Cyperaceae), and Their Herbal Pair[Pubmed: 34402190] | The essential oil (EO) of the herbal pair (HP), Alpinia officinarum-Cyperus rotundus (HP G-X) has been conventionally used in traditional Chinese medicine (TCM) for 'warming the stomach' and relieving pain. However, its pharmacologically active compounds, as well as the mechanism of its anti-gastric ulcer properties remain unclear. In this study, the EOs obtained from HP G-X and its corresponding single herbs were analyzed using GC/MS. A total of 74, 56, and 85 compounds were detected in A. officinarum (GLJ), C. rotundus (XF), and HP G-X, accounting for 93.2 %, 89.5 %, and 92.0 % of the total content, respectively. GLJ mainly contains 1,8-cineol (22.0 %) and α-terpineol (11.8 %), whereas cyperenone (22.4 %) and cyperene (12.3 %) were the major constituents in XF. These four compounds were also detected in the HP G-X with relatively high composition as 11.8 %, 5.5 %, 11.8 %, and 10.6 %, respectively. Although no new compounds were detected in HP G-X, the relative concentration of some compounds increased, while others decreased or even disappeared. HP G-X showed the lowest toxicity (TC50 >800 μg/mL) against human gastric mucosal epithelial cells (GES-1) and had the best protective effect against ethanol-induced GES-1 cell damage compared to the individual herbs. In vitro studies demonstrated that HP G-X and the corresponding single herbs significantly reduced IL-6, TNF-α, and COX-2. In addition, in vivo investigations indicated that HP G-X can protect the gastric mucosa of mice from ethanol-induced damage by inhibiting the inflammatory reaction and providing analgesia. It can also inhibit the expression of NF-κBp65, COX-2, and TRPV1 protein, reduce the concentrations of IL-6 and TNF-α, and relieve heat-induced pain. This study further substantiated the traditional application of HP G-X against gastric ulcers through both in vivo and in vitro investigations. | BMC Complement Altern Med . 2014 Dec 23;14:514. | Chemical composition, antinociceptive, anti-inflammatory and redox properties in vitro of the essential oil from Remirea maritima Aubl. (Cyperaceae)[Pubmed: 25539576] | Background: The present study was carried out to evaluate antioxidant, antinociceptive and anti-inflammatory activities of essential oil from R. maritima (RMO) in experimental protocols.
Methods: The essential oil from the roots and rhizomes of RMO were obtained by hydrodistillation using a Clevenger apparatus, and analyzed by gas chromatography/mass spectrometry (GC/MS). Here, we evaluated free radical scavenging activities and antioxidant potential of RMO using in vitro assays for scavenging activity against hydroxyl radicals, hydrogen peroxide, superoxide radicals, and nitric oxide. The total reactive antioxidant potential (TRAP) and total antioxidant reactivity (TAR) indexes and in vitro lipoperoxidation were also evaluated. The ability of RMO to prevent lipid peroxidation was measured by quantifying thiobarbituric acid-reactive substances (TBARS). NO radical generated at physiological pH was found to be inhibited by RMO, that showed scavenging effect upon SNP-induced NO production at all concentrations. Antinociceptive and anti-inflammatory properties were evaluated by acetic acid writhing reflex, Formalin-induced nociception and Carrageenan-induced edema test.
Results: The majors compounds identified was remirol (43.2%), cyperene (13.8%), iso-evodionol (5.8%), cyperotundone (5.7%), caryophyllene oxide (4.9%), and rotundene (4.6%). At the TRAP assay, RMO concentration of 1 mg.mL(-1) showed anti-oxidant effects and at concentration of 1 and 10 ng.mL(-1) RMO showed pro-oxidant effect. RMO at 1 mg.mL(-1) also showed significant anti-oxidant capacity in TAR measurement. Concentrations of RMO from 1 ng.mL(-1) to 100 μg.mL(-1) enhanced the AAPH-induced lipoperoxidation. RMO reduced deoxyribose oxidative damage, induced by the Fenton reaction induction system, at concentrations from 1 ng.mL(-1) to 100 μg.mL(-1). We observed that RMO caused a significant increase in rate of adrenaline auto-oxidation. On the other hand RMO did not present any scavenging effect in H2O2 formation in vitro. The results of this study revealed that RMO has both peripheral and central analgesic properties. The RMO, all doses, orally (p.o.) administered significantly inhibited (p < 0.05, p < 0.01 and p < 0.001) the acetic acid-induced writhings and two phases of formalin-induced nociception in mice. |
|