In vitro: |
Phytomedicine. 2014 Sep 25;21(11):1303-9. | Prenylated xanthones from mangosteen as promising cholinesterase inhibitors and their molecular docking studies.[Pubmed: 25172794] | Garcinia mangostana is a well-known tropical plant found mostly in South East Asia. METHODS AND RESULTS: The present study investigated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of G. mangostana extract and its chemical constituents using Ellman's colorimetric method. Cholinesterase inhibitory-guided approach led to identification of six bioactive prenylated xanthones showing moderate to potent cholinesterases inhibition with IC50 values of lower than 20.5 μM. The most potent inhibitor of AChE was garcinone C while γ-mangostin was the most potent inhibitor of BChE with IC50 values of 1.24 and 1.78 μM, respectively. Among the xanthones, mangostanol, 3-isomangostin, garcinone C and α-mangostin are AChE selective inhibitors, 8-deoxygartanin is a BChE selective inhibitor while γ-mangostin is a dual inhibitor. Preliminary structure-activity relationship suggests the importance of the C-8 prenyl and C-7 hydroxy groups for good AChE and BChE inhibitory activities. The enzyme kinetic studies indicate that both α-mangostin and garcinone C are mixed-mode inhibitors, while γ-mangostin is a non-competitive inhibitor of AChE. In contrast, both γ-mangostin and garcinone C are uncompetitive inhibitors, while α-mangostin is a mixed-mode inhibitor of BChE.
CONCLUSIONS:
Molecular docking studies revealed that α-mangostin, γ-mangostin and garcinone C interacts differently with the five important regions of AChE and BChE. The nature of protein-ligand interactions is mainly hydrophobic and hydrogen bonding. These bioactive prenylated xanthones are worthy for further investigations. | Neurochem Res. 2016 Jul;41(7):1806-17. | Natural Xanthones from Garcinia mangostana with Multifunctional Activities for the Therapy of Alzheimer's Disease.[Pubmed: 27038926 ] | Natural xanthones have diversity pharmacological activities.
METHODS AND RESULTS:
Here, a series of xanthones isolated from the pericarps of Garcinia mangostana Linn, named α-Mangostin, 8-Deoxygartanin, Gartanin, Garciniafuran, Garcinone C, Garcinone D, and γ-Mangostin were investigated. Biological screening performed in vitro and in Escherichia coli cells indicated that most of the xanthones exhibited significant inhibition of self-induced β-amyloid (Aβ) aggregation and also β-site amyloid precursor protein-cleaving enzyme 1, acted as potential antioxidants and biometal chelators. Among these compounds, α-Mangostin, Gartanin, Garcinone C and γ-Mangostin showed better antioxidant properties to scavenge Diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH) free radical than Trolox, and potent neuroprotective effects against glutamate-induced HT22 cell death partly by up-regulating HO-1 protein level and then scavenging reactive oxygen species. Moreover, Gartanin, Garcinone C and γ-Mangostin could be able to penetrate the blood-brain barrier (BBB) in vitro.
CONCLUSIONS:
These findings suggest that the natural xanthones have multifunctional activities against Alzheimer's disease (AD) and could be promising compounds for the therapy of AD. | Chem Pharm Bull (Tokyo). 2008 Mar;56(3):374-7. | Endodesmiadiol, a friedelane triterpenoid, and other antiplasmodial compounds from Endodesmia calophylloides.[Pubmed: 18310952] | METHODS AND RESULTS:
From the ethyl acetate extract of the stem bark of Endodesmia calophylloides (Guttiferae), a novel friedelane triterpenoid named endodesmiadiol (1), as well as the known compounds friedelin (2), canophyllol (3), canophyllal (4), cerin (5), morelloflavone (6), volkensiflavone (7), 8-Deoxygartanin (8), 3 beta-acetoxyoleanolic acid (9) and 1,8-dihydroxy-3-isoprenyloxy-6-methylxanthone (10) have been isolated. The structures of these compounds were established by spectroscopic analysis, and the relative configuration of endodesmiadiol (1) was confirmed by X-ray diffraction. The antiplasmodial activity of the isolated compounds was evaluated against the W2 strain of Plasmodium falciparum which is resistant to chloroquine and other antimalarial drugs.
CONCLUSIONS:
All the compounds were found to be active with IC50 values ranging from 7.2 to 23.6 microM. The IC50 of endodesmiadiol was found to be 11.8 microM. |
|