Description: |
Ingenol 3,20-dibenzoate is a potent, isoform-selective agonist of protein kinase C (PKC). Ingenol 3,20-dibenzoate induces selective translocation of nPKC-δ, -ε, and -θ and PKC-μ from the cytosolic fraction to the particulate fraction and induces morphologically typical apoptosis through de novo synthesis of macromolecules. Ingenol 3,20-dibenzoate increases the IFN-γ production and degranulation by NK cells, especially when NK cells are stimulated by NSCLC cells. |
In vitro: |
J Biol Chem . 1998 Oct 23;273(43):28392-8. | Induction of thymocyte apoptosis by Ca2+-independent protein kinase C (nPKC) activation and its regulation by calcineurin activation[Pubmed: 9774466] | Glucocorticoids appear to participate in apoptosis of unselected CD4(+)CD8(+) thymocytes. Activation of Ca2+-independent novel protein kinase C (nPKC) precedes glucocorticoid-induced thymocyte apoptosis, while proper levels of Ca2+-dependent protein kinase C (cPKC) and calcineurin activities contribute to rescue thymocytes. To clarify the role of nPKC in thymocyte apoptosis, murine thymocytes were stimulated with the diterpene diester, ingenol 3, 20-dibenzoate (IDB). IDB induced selective translocation of nPKC-delta, -epsilon, and -theta and PKC-mu from the cytosolic fraction to the particulate fraction and induced morphologically typical apoptosis through de novo synthesis of macromolecules. The apoptosis was also induced by thymeleatoxin, a diterpene ester, at relatively high concentrations that induced translocation of cPKC, nPKC-theta, and PKC-mu. The IDB- or thymeleatoxin-induced death was inhibited by non-isoform-selective PKC inhibitors, but not by their structural analogs with weak PKC-inhibitory activity or the selective inhibitor of cPKC and PKC-mu, Gö 6976. The death was also inhibited by calcium ionophore ionomycin at concentrations within a narrow range. The range corresponded to the concentration range that contributes to the inhibition of glucocorticoid-induced apoptosis. The antiapoptotic effect was canceled by the immunosuppressant FK506 but not by rapamycin. These results indicate that activation of nPKC, especially nPKC-theta, induces apoptosis in thymocytes and that calcineurin activation regulates the apoptosis. | Mol Immunol . 2017 Mar;83:23-32. | Enhancement of NK cell-mediated lysis of non-small lung cancer cells by nPKC activator, ingenol 3,20 dibenzoate[Pubmed: 28092804] | The IFN-γ production is crucial for NK cell-mediated lysis of cancer cells. Thus increasing the IFN-γ production by NK cells may be an ideal strategy to improve their tumoricidal effect. Since the focus on new drug development has shifted towards natural products, limited information is out there about natural products that enhance the IFN-γ production by NK cells. In this study, through a high-throughput screening, we have identified a natural product ingenol 3,20 dibenzoate (IDB), an activator of tumor suppressor protein kinase C (PKC) isozymes, could increase the IFN-γ production and degranulation by NK cells, especially when NK cells were stimulated by non-small lung cancer (NSCLC) cells. IDB also significantly enhanced the NK cell-mediated lysis of NSCLC cells. Furthermore, PKC inhibitor, sotrastaurin abrogated IDB-induced IFN-γ production, degranulation and cytotoxicity, but did not affect IFN-γ production by NK cells without IDB treatment and NSCLC cell stimulation. The IFN-γ neutralization reversed the IDB-induced enhancement of NK cell mediated killing. In conclusion, our study indicated that IDB enhanced NK cell-mediated lysis of NSCLC cells is dependent on specific PKC mediated IFN-γ production and degranulation. Thus, IDB may have a promising application in clinic for NK cell-based cancer immunotherapy. | Mol Pharmacol . 2015 Aug;88(2):392-400. | Biphasic Effects of Ingenol 3,20-Dibenzoate on the Erythropoietin Receptor: Synergism at Low Doses and Antagonism at High Doses[Pubmed: 26048958] | Although ingenol 3,20-dibenzoate (IDB) is known as a selective novel protein kinase C (PKC) agonist, its biologic actions and underlying mechanisms remain incompletely understood. In this study, we identified IDB as a proliferative agent for an erythropoietin (EPO)-dependent cell line, UT-7/EPO, through the screening of a natural compound library. To clarify the underlying mechanism of IDB's EPO-like activities, we thoroughly analyzed the mutual relation between EPO and IDB in terms of in vitro and in vivo activities, signaling molecules, and a cellular receptor. IDB substantially induced the proliferation of UT-7/EPO cells, but not as much as EPO. IDB also lessened the anemia induced by 5-fluorouracil in an in vivo mouse model. Interestingly, IDB showed a synergistic effect on EPO at low concentration, but an antagonistic effect at higher concentration. Physical interaction and activation of PKCs by IDB- and EPO-competitive binding of IDB to EPO receptor (EPOR) explain these synergistic and antagonistic activities, respectively. Importantly, we addressed IDB's mechanism of action by demonstrating the direct binding of IDB to PKCs, and by identifying EPOR as a novel molecular target of IDB. Based on these dual targeting properties, IDB holds promise as a new small molecule modulator of EPO-related pathologic conditions. | Antimicrob Agents Chemother . 2015 Oct;59(10):5984-5991. | Ex Vivo Bioactivity and HIV-1 Latency Reversal by Ingenol Dibenzoate and Panobinostat in Resting CD4(+) T Cells from Aviremic Patients[Pubmed: 26169416] | The human immunodeficiency virus type 1 (HIV-1) latent reservoir in resting CD4(+) T cells represents a major barrier to viral eradication. Small compounds capable of latency reversal have not demonstrated uniform responses across in vitro HIV-1 latency cell models. Characterizing compounds that demonstrate latency-reversing activity in resting CD4(+) T cells from aviremic patients ex vivo will help inform pilot clinical trials aimed at HIV-1 eradication. We have optimized a rapid ex vivo assay using resting CD4(+) T cells from aviremic HIV-1(+) patients to evaluate both the bioactivity and latency-reversing potential of candidate latency-reversing agents (LRAs). Using this assay, we characterize the properties of two candidate compounds from promising LRA classes, ingenol 3,20-dibenzoate (a protein kinase C agonist) and panobinostat (a histone deacetylase inhibitor), in cells from HIV-1(+) antiretroviral therapy (ART)-treated aviremic participants, including the effects on cellular activation and cytotoxicity. Ingenol induced viral release at levels similar to those of the positive control (CD3/28 receptor stimulation) in cells from a majority of participants and represents an exciting LRA candidate, as it combines a robust viral reactivation potential with a low toxicity profile. At concentrations that blocked histone deacetylation, panobinostat displayed a wide range of potency among participant samples and consistently induced significant levels of apoptosis. The protein kinase C agonist ingenol 3,20-dibenzoate demonstrated significant promise in a rapid ex vivo assay using resting CD4(+) T cells from treated HIV-1-positive patients to measure latent HIV-1 reactivation. |
|
In vivo: |
Nat Commun . 2018 Sep 26;9(1):3941. | Identification of small-molecule ion channel modulators in C. elegans channelopathy models[Pubmed: 30258187] | Ion channels are important therapeutic targets, but the discovery of ion channel drugs remains challenging due to a lack of assays that allow high-throughput screening in the physiological context. Here we report C. elegans phenotype-based methods for screening ion channel drugs. Expression of modified human ether-a-go-go-related gene (hERG) potassium channels in C. elegans results in egg-laying and locomotive defects, which offer indicators for screening small-molecule channel modulators. Screening in worms expressing hERGA561V, which carries a trafficking-defective mutation A561V known to associate with long-QT syndrome, identifies two functional correctors Prostratin and ingenol-3,20-dibenzoate. These compounds activate PKCε signaling and consequently phosphorylate S606 at the pore region of the channel to promote hERGA561V trafficking to the plasma membrane. Importantly, the compounds correct electrophysiological abnormalities in hiPSC-derived cardiomyocytes bearing a heterozygous CRISPR/Cas9-edited hERGA561V. Thus, we have developed an in vivo high-throughput method for screening compounds that have therapeutic potential in treating channelopathies. |
|