Description: |
Galangin is an agonist/antagonist of the arylhydrocarbon receptor, and also shows inhibition of CYP1A1 activity. Galangin has anti-proliferation, anti-metastatic, anti-inflammatory, vasorelaxant, antiviral, anti-allergic inflammatory,anti-obesity effects; it may be a potential candidate for the treatment of vitiligo. Galangin can inhibit Topo I activity and reduce the unwinding rate of single stranded DNNA in tumor cells, which plays an important role in induction of A549 and H46 cell apoptosis. Galangin shows an inhibitory effect on acetylcholinesterase (AChE) activity with the IC(50) of 120 microM;
it also inhibits ERK, NF-κB-p65 and proinflammatory gene expression. |
In vitro: |
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2015 May;40(5):479-85. | Inhibitory effect of galangin on DNA topoisomerases in lung cancer cells.[Pubmed: 26032076] | To explore the eff ect of galangin on DNA topoisomerases in lung cancer cells A549 and H46 as well on cell growth.
METHODS AND RESULTS:
The inhibitory effect of galangin on the growth of A549 and H46 cells was analyzed by MTT method. The effect of galangin on Topo I activity was detected by the agarose gel electrophoresis method. Furthermore, the interaction between galangin and Topo I was evaluated by fluorescence spectroscopy. Finally, the eff ect of galangin on the Topo I structure was discussed.
Galangin could induce the apoptosis of A549 and H46 cells (IC50 was 0.221 mmol/L and 0.173 mmol/L, respectively). Agarose gel electrophoresis showed that galangin exerted significant inhibitory effect on Topo I activity. Fluorescence spectrum analysis showed that galangin was able to quench Topo I fluorescence, and hydrophobic interaction was the main driving force. Circular dichroism analysis showed that galangin induced Topo I conformation change and increased the content of α-helix, which prevented the formation of active center and in turn led to the decrease in Topo I activity. Molecular simulation results showed that galangin could bind to the active center of Topo I to form hydrogen bonds with the catalytic site at Arg364 and Asn352.
CONCLUSIONS:
Galangin is able to inhibit Topo I activity and to reduce the unwinding rate of single stranded DNNA in tumor cells, which plays an important role in induction of A549 and H46 cell apoptosis. | Immunopharmacol Immunotoxicol. 2014 Dec;36(6):426-32. | Anti-inflammatory effects of galangin on lipopolysaccharide-activated macrophages via ERK and NF-κB pathway regulation.[Pubmed: 25270721] | Inflammation is the major symptom of the innate immune response to microbial infection. Macrophages, immune response-related cells, play a role in the inflammatory response. Galangin is a member of the flavonols and is found in Alpinia officinarum, galangal root and propolis. Previous studies have demonstrated that galangin has antioxidant, anticancer, and antineoplastic activities.
However, the anti-inflammatory effects of galangin are still unknown.
METHODS AND RESULTS:
In this study, we investigated the anti-inflammatory effects of galangin on RAW 264.7 murine macrophages. Galagin was not cytotoxic to RAW 264.7 cells, and nitric oxide (NO) production induced by lipopolysaccharide (LPS)-stimulated macrophages was significantly decreased by the addition of 50 μM galangin. Moreover, galangin treatment reduced mRNA levels of cytokines, including IL-1β and IL-6, and proinflammatory genes, such as iNOS in LPS-activated macrophages in a dose-dependent manner. Galangin treatment also decreased the protein expression levels of iNOS in activated macrophages. Galangin was found to elicit anti-inflammatory effects by inhibiting ERK and NF-κB-p65 phosphorylation. In addition, galangin-inhibited IL-1β production in LPS-activated macrophages.
CONCLUSIONS:
These results suggest that galangin elicits anti-inflammatory effects on LPS-activated macrophages via the inhibition of ERK, NF-κB-p65 and proinflammatory gene expression. | J Ethnopharmacol. 1997 Apr;56(2):165-9. | Antiviral activity of galangin isolated from the aerial parts of Helichrysum aureonitens.[Pubmed: 9174978] | METHODS AND RESULTS:
The in vitro antiviral activity of galangin (3,5,7-trihydroxyflavone), the major antimicrobial compound isolated from the shoots of Helichrysum aureonitens, was investigated against herpes simplex virus type 1 (HSV-1), coxsackie B virus type 1 (Cox B1), adenovirus type 31 (Ad31) and reovirus. At concentrations ranging from 12-47 micrograms/ml galangin showed significant antiviral activity against HSV-1 and CoxB1, limited activity against reovirus, and no antiviral activity against Ad31. | Life Sci. 2006 Jan 18;78(8):825-30. | Vasorelaxant effect of the flavonoid galangin on isolated rat thoracic aorta.[Pubmed: 16169019 ] | Here we investigated the effect of the flavonoid galangin in isolated rat thoracic aortic rings.
METHODS AND RESULTS:
Galangin (0.1-100 microM) induced relaxation in rings pre-contracted with phenylephrine (PE 1 microM) or with KCl (100 mM) or pre-treated with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 100 microM), the cyclooxygenase inhibitor indomethacin (10 microM) and the adenylate cyclase inhibitor, SQ 22,536 (100 microM). In another set of experiments, rat aortic rings were incubated with galangin (1-100 microM) and the contractile responses to PE (0.001-3 microM) or to KCl (60 mM) were evaluated. We also evaluated the effect of galangin (100 microM) on PE (10 microM)-induced contraction in a Ca2+-free medium. Galangin relaxed aortic rings with or without endothelium. Galangin effect was significantly inhibited by L-NAME. Galangin inhibited the contractile response to PE, either in presence or in absence of external calcium, and to KCl. In the end, we also found that galangin caused nitric oxide (NO) release from aortic rings and abolished the increase in [Ca2+]i triggered by PE or KCl in aortic smooth muscle cells, either in presence and in absence of external Ca2+.
CONCLUSIONS:
Our results suggest that galangin reduces the contractility of rat aortic rings through an endothelium-dependent mechanism, involving NO, and also through an endothelium-independent mechanism, inhibiting calcium movements through cell membranes. |
|
In vivo: |
Phytother Res. 2014 Oct;28(10):1533-8. | The effects of galangin on a mouse model of vitiligo induced by hydroquinone.[Pubmed: 24820380] | METHODS AND RESULTS:
Galangin, the main active component of Alpinia officinarum Hance, was tested in a mouse model of vitiligo induced in C57BL/6 mice by the topical application of 2 mL of 2.5% hydroquinone daily to shaved areas (2 × 2 cm) of dorsal skin for 60 days.
Thirty days after the final application of hydroquinone, galangin (0.425, and 4.25 mg/kg) was administered orally for 30 days. The hair colour darkened when it grew back after treatment, and histological analysis showed that the number of melanin-containing hair follicles had increased after treatment with all doses of galangin groups and 8-methoxypsoralen (8-MOP, the positive control) compared with the untreated vitiligo group (p < 0.05). The number of skin basal layer melanocytes and melanin-containing epidermal cells had also increased significantly with the application of 4.25 mg/kg of galangin. The concentration of tyrosinase (TYR) in serum was found to have increased, whereas the content of malondialdehyde and the activity of cholinesterase had decreased after treatment with all doses of galangin and 8-MOP, compared with control (p < 0.05). The expression of TYR protein in treated areas of skin also increased with the application of 4.25 mg/kg galangin and 8-MOP.
CONCLUSIONS:
In conclusion, the results showed that galangin was able to improve vitiligo induced by hydroquinone in mice, with the activity related to concentrations of TYR, expression of TYR protein, activity of malondialdehyde and content of cholinesterase. Galangin may therefore be a potential candidate for the treatment of vitiligo, subject to further investigation. |
|