Info: Read More
  • 中药标准品生产商,产品定制服务
  • 康普瑞丁A4

    Combretastatin A4

    康普瑞丁A4
    产品编号 CFN91658
    CAS编号 117048-59-6
    分子式 = 分子量 C18H20O5 = 316.35
    产品纯度 >=98%
    物理属性 Powder
    化合物类型 Phenols
    植物来源
    ChemFaces的产品在影响因子大于5的优秀和顶级科学期刊中被引用
    提供自定义包装
    产品名称 产品编号 CAS编号 包装 QQ客服
    康普瑞丁A4 CFN91658 117048-59-6 10mg QQ客服:2159513211
    康普瑞丁A4 CFN91658 117048-59-6 20mg QQ客服:2159513211
    康普瑞丁A4 CFN91658 117048-59-6 50mg QQ客服:2159513211
    康普瑞丁A4 CFN91658 117048-59-6 100mg QQ客服:2159513211
    存储与注意事项
    1. 在您收到产品后请检查产品。如无问题,请将产品存入冰霜并且样品瓶保持密封,产品可以存放长达24个月(2-8摄氏度)。

    2. 只要有可能,产品溶解后,您应该在同一天应用于您的实验。 但是,如果您需要提前做预实验,或者需要全部溶解,我们建议您将溶液以等分试样的形式存放在-20℃的密封小瓶中。 通常,这些可用于长达两周。 使用前,打开样品瓶前,我们建议您将产品平衡至室温至少1小时。

    3. 需要更多关于溶解度,使用和处理的建议? 请发送电子邮件至:service@chemfaces.com
    订购流程
  • 1. 在线订购
  • 请联系我们QQ客服

  • 2. 电话订购
  • 请拨打电话:
    027-84237683 或 027-84237783

  • 3. 邮件或传真订购
  • 发送电子邮件到: manager@chemfaces.com 或
    发送传真到:027-84254680

  • 提供订购信息
  • 为了方便客户的订购,请需要订购ChemFaces产品的客户,在下单的时候请提供下列信息,以供我们快速为您建立发货信息。
  •  
  • 1. 产品编号(CAS No.或产品名称)
  • 2. 发货地址
  • 3. 联系方法 (联系人,电话)
  • 4. 开票抬头 (如果需要发票的客户)
  • 5. 发票地址(发货地址与发票地址不同)
  • 发货时间
    1. 付款方式为100%预付款客户,我们将在确认收到货款后当天或1-3个工作日发货。

    2. 付款方式为月结的客户,我们承诺在收到订单后当天或1-3个工作日内发货。

    3. 如果客户所需要的产品,需要重新生产,我们有权告知客户,交货时间需要延期。
    ChemFaces的产品在许多优秀和顶级科学期刊中被引用

    Cell. 2018 Jan 11;172(1-2):249-261.e12.
    doi: 10.1016/j.cell.2017.12.019.
    IF=36.216(2019)

    PMID: 29328914

    Cell Metab. 2020 Mar 3;31(3):534-548.e5.
    doi: 10.1016/j.cmet.2020.01.002.
    IF=22.415(2019)

    PMID: 32004475

    Mol Cell. 2017 Nov 16;68(4):673-685.e6.
    doi: 10.1016/j.molcel.2017.10.022.
    IF=14.548(2019)

    PMID: 29149595

    ACS Nano. 2018 Apr 24;12(4): 3385-3396.
    doi: 10.1021/acsnano.7b08969.
    IF=13.903(2019)

    PMID: 29553709

    Nature Plants. 2016 Dec 22;3: 16206.
    doi: 10.1038/nplants.2016.205.
    IF=13.297(2019)

    PMID: 28005066

    Sci Adv. 2018 Oct 24;4(10): eaat6994.
    doi: 10.1126/sciadv.aat6994.
    IF=12.804(2019)

    PMID: 30417089
    我们的产品现已经出口到下面的研究机构与大学,并且还在增涨
  • Guangzhou Institutes of Biomedicine and Health (China)
  • Molecular Biology Institute of Barcelona (IBMB)-CSIC (Spain)
  • Mahatma Gandhi University (India)
  • Medizinische Universit?t Wien (Austria)
  • Universidade Federal de Goias (UFG) (Brazil)
  • University of Mysore (India)
  • Regional Crop Research Institute (Korea)
  • Pennsylvania State University (USA)
  • University of East Anglia (United Kingdom)
  • Universitas Airlangga (Indonesia)
  • Universiti Sains Malaysia (Malaysia)
  • University Medical Center Mainz (Germany)
  • Universidad Industrial de Santander (Colombia)
  • Lund University (Sweden)
  • More...
  • 国外学术期刊发表的引用ChemFaces产品的部分文献
  • Cell.2022, 185(23):4298-4316.e21.
  • J Ethnopharmacol.2017, 198:87-90
  • Chinese Pharmacological Bulletin2019, 35(8):1120-1125
  • Plant J.2021, 107(6):1711-1723.
  • Natural Product Communications2020, doi: 10.1177.
  • Front Microbiol.2019, 10:2806
  • Biomed Chromatogr.2022, 36(11):e5462.
  • Molecules.2018, 23(7):E1659
  • Heliyon2020, 6(6):e04337.
  • Sci Rep. 2017, 8207(7)
  • Plant Cell, Tissue and Organ Culture (PCTOC)2020, 143, 45-60(2020)
  • J Drug Delivery Science and Tech.2022, 67:102957.
  • Nat Prod Commun.2014, 9(5):679-82
  • Int. J. of Food Properties2017, S108-S118
  • Chinese Journal of Hospital Pharmacy2020, 40(7)
  • Food Funct.2022, 13(13):6923-6933.
  • Vojnosanit Pregl2016, 75(00):391-391
  • J Pharm Biomed Anal.2017, 140:274-280
  • J Phys Chem Lett.2021, 12(7):1793-1802.
  • Microchemical Journal2018, 137:168-173
  • Int J Mol Sci.2021, 22(16):8641.
  • J Nat Prod.2015, 78(6):1339-4
  • J Korean Soc Food Sci Nutr2023, 52(11):1101-1110
  • ...
  • 生物活性
    Description: Combretastatin A4 is a microtubule-targeting agent that binds β-tubulin with Kd of 0.4 μM.
    In vitro:
    J Med Chem . 2014 Apr 24;57(8):3369-3381.
    Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents[Pubmed: 24669888]
    A series of novel pyridine-bridged analogues of combretastatin-A4 (CA-4) were designed and synthesized. As expected, the 4-atom linker configuration retained little cytotoxicities in the compounds 2e, 3e, 3g, and 4i. Activities of the analogues with 3-atom linker varied widely depending on the phenyl ring substitutions, and the 3-atom linker containing nitrogen represents the more favorable linker structure. Among them, three analogues (4h, 4s, and 4t) potently inhibited cell survival and growth, arrested cell cycle, and blocked angiogenesis and vasculature formation in vivo in ways comparable to CA-4. The superposition of 4h and 4s in the colchicine-binding pocket of tubulin shows the binding posture of CA-4, 4h, and 4s are similar, as confirmed by the competitive binding assay where the ability of the ligands to replace tubulin-bound colchicine was measured. The binding data are consistent with the observed biological activities in antiproliferation and suppression of angiogenesis but are not predictive of their antitubulin polymerization activities.
    J Biomed Nanotechnol . 2015 Jun;11(6):997-1006.
    Co-Encapsulation of Combretastatin-A4 Phosphate and Doxorubicin in Polymersomes for Synergistic Therapy of Nasopharyngeal Epidermal Carcinoma[Pubmed: 26353589]
    In this study, we designed biodegradable polymersomes for co-delivery of an antiangiogenic drug combretastatin-A4 phosphate (CA4P) and doxorubicin (DOX) to collapse tumor neovasculature and inhibit cancer cell proliferation with the aim to achieve synergistic antitumor effects. The polymersomes co-encapsulating DOX and CA4P (Ps-DOX-CA4P) were prepared by solvent evaporation method using methoxy poly(ethylene glycol)-b-polylactide (mPEG-PLA) block copolymers as drug carriers. The resulting Ps-DOX-CA4P has vesicles shape with uniform sizes of about 50 nm and controlled co-encapsulation ratios of DOX to CA4P. More importantly, Ps-DOX-CA4P (1:10) showed strong synergistic cytotoxicity (combination index CI = 0.31) against human nasopharyngeal epidermal carcinoma (KB) cells. Furthermore, Ps-DOX-CA4P accumulated remarkably in KB tissues xenografts in nude mice. Consistent with these observations, Ps-DOX-CA4P (1:10) achieved significant antitumor potency because of fast tumor vasculature disruption and sustained tumor cells proliferation inhibition in vivo. The overall findings indicate that co-delivery of an antiangiogenic drug and a chemotherapeutic agent in polymersomes is a potentially promising strategy for cancer therapy.
    Cell Physiol Biochem . 2016;38(3):969-981.
    Stimulation of Eryptosis by Combretastatin A4 Phosphate Disodium (CA4P)[Pubmed: 26938611]
    Background/aims: Combretastatin A4 phosphate disodium (CA4P) is utilized for the treatment of malignancy. The substance has previously been shown to trigger suicidal cell death or apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), ceramide, oxidative stress and ATP depletion. The present study explored, whether CA4P induces eryptosis and, if so, to gain insight into mechanisms involved. Methods: Flow cytometry has been employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) abundance from DCF fluorescence, glutathione (GSH) abundance from CMF fluorescence and ceramide abundance from fluorescent antibodies. In addition cytosolic ATP levels were quantified utilizing a luciferin-luciferase-based assay and hemolysis was estimated from hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to CA4P (≥ 50 μM) significantly increased the percentage of annexin-V-binding cells and significantly decreased forward scatter. CA4P did not appreciably increase hemolysis. Hundred μM CA4P significantly increased Fluo3-fluorescence. The effect of CA4P (100 μM) on annexin-V-binding was significantly blunted, but not abolished, by removal of extracellular Ca2+. CA4P (≥ 50 μM) significantly decreased GSH abundance and ATP levels but did not significantly increase ROS or ceramide. Conclusions: CA4P triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to entry of extracellular Ca2+ and energy depletion.
    Tumour Biol . 2015 Nov;36(11):8499-8510.
    Combretastatin A4 phosphate treatment induces vasculogenic mimicry formation of W256 breast carcinoma tumor in vitro and in vivo[Pubmed: 26026583]
    The purpose of this study was to investigate the effect of combretastatin A4 phosphate (CA4P) on vasculogenic mimicry (VM) channel formation in vitro and in vivo after a single-dose treatment and the underlying mechanism involved in supporting VM. In vitro model of three-dimensional cultures was used to test the effect of CA4P on the tube formation of Walker 256 cells. Western blot analysis was conducted to assess the expression of hypoxia-inducible factor (HIF)-1α and VM-associated markers. W256 tumor-bearing rat model was established to demonstrate the effect of CA4P on VM formation and tumor hypoxia by double staining and a hypoxic marker pimonidazole. Anti-tumor efficacy of CA4P treatment was evaluated by tumor growth curve. Under hypoxic conditions for 48 h in vitro, W256 cells formed VM network associated with increased expression of VM markers. Pretreatment with CA4P did not influence the amount of VM in 3-D culture as well as the expression of these key molecules. In vivo, W256 tumors showed marked intratumoral hypoxia after CA4P treatment, accompanied by increased VM formation. CA4P exhibited only a delay in tumor growth within 2 days but rapid tumor regrowth afterward. VM density was positively related to tumor volume and tumor weight at day 8. CA4P causes hypoxia which induces VM formation in W256 tumors through HIF-1α/EphA2/PI3K/matrix metalloproteinase (MMP) signaling pathway, resulting in the consequent regrowth of the damaged tumor.
    In vivo:
    Magn Reson Med . 2016 Feb;75(2):866-872.
    Monitoring Combretastatin A4-induced tumor hypoxia and hemodynamic changes using endogenous MR contrast and DCE-MRI[Pubmed: 25765253]
    Purpose: To benchmark MOBILE (Mapping of Oxygen By Imaging Lipid relaxation Enhancement), a recent noninvasive MR method of mapping changes in tumor hypoxia, electron paramagnetic resonance (EPR) oximetry, and dynamic contrast-enhanced MRI (DCE-MRI) as biomarkers of changes in tumor hemodynamics induced by the antivascular agent combretastatin A4 (CA4). Methods: NT2 and MDA-MB-231 mammary tumors were implanted subcutaneously in FVB/N and nude NMRI mice. Mice received 100 mg/kg of CA4 intraperitoneally 3 hr before imaging. The MOBILE sequence (assessing R1 of lipids) and the DCE sequence (assessing K(trans) hemodynamic parameter), were assessed on different cohorts. pO2 changes were confirmed on matching tumors using EPR oximetry consecutive to the MOBILE sequence. Changes in tumor vasculature were assessed using immunohistology consecutive to DCE-MRI studies. Results: Administration of CA4 induced a significant decrease in lipids R1 (P = 0.0273) on pooled tumor models and a reduction in tumor pO2 measured by EPR oximetry. DCE-MRI also exhibited a significant drop of K(trans) (P < 0.01) that was confirmed by immunohistology. Conclusion: MOBILE was identified as a marker to follow a decrease in oxygenation induced by CA4. However, DCE-MRI showed a higher dynamic range to follow changes in tumor hemodynamics induced by CA4.
    NMR Biomed. 2014 Nov;27(11):1403-1412.
    Dynamic contrast-enhanced MRI in mouse tumors at 11.7 T: comparison of three contrast agents with different molecular weights to assess the early effects of combretastatin A4[Pubmed: 25323069]
    Dynamic contrast-enhanced (DCE)-MRI is useful to assess the early effects of drugs acting on tumor vasculature, namely anti-angiogenic and vascular disrupting agents. Ultra-high-field MRI allows higher-resolution scanning for DCE-MRI while maintaining an adequate signal-to-noise ratio. However, increases in susceptibility effects, combined with decreases in longitudinal relaxivity of gadolinium-based contrast agents (GdCAs), make DCE-MRI more challenging at high field. The aim of this work was to explore the feasibility of using DCE-MRI at 11.7 T to assess the tumor hemodynamics of mice. Three GdCAs possessing different molecular weights (gadoterate: 560 Da, 0.29 mmol Gd/kg; p846: 3.5 kDa, 0.10 mmol Gd/kg; and p792: 6.47 kDa, 0.15 mmol Gd/kg) were compared to see the influence of the molecular weight in the highlight of the biologic effects induced by combretastatin A4 (CA4). Mice bearing transplantable liver tumor (TLT) hepatocarcinoma were divided into two groups (n = 5-6 per group and per GdCA): a treated group receiving 100 mg/kg CA4, and a control group receiving vehicle. The mice were imaged at 11.7 T with a T1 -weighted FLASH sequence 2 h after the treatment. Individual arterial input functions (AIFs) were computed using phase imaging. These AIFs were used in the Extended Tofts Model to determine K(trans) and vp values. A separate immunohistochemistry study was performed to assess the vascular perfusion and the vascular density. Phase imaging was used successfully to measure the AIF for the three GdCAs. In control groups, an inverse relationship between the molecular weight of the GdCA and K(trans) and vp values was observed. K(trans) was significantly decreased in the treated group compared with the control group for each GdCA. DCE-MRI at 11.7 T is feasible to assess tumor hemodynamics in mice. With K(trans) , the three GdCAs were able to track the early vascular effects induced by CA4 treatment.
    J Toxicol Pathol . 2016 Jul;29(3):163-171.
    Combretastatin A4 disodium phosphate-induced myocardial injury[Pubmed: 27559241]
    Histopathological and electrocardiographic features of myocardial lesions induced by combretastatin A4 disodium phosphate (CA4DP) were evaluated, and the relation between myocardial lesions and vascular changes and the direct toxic effect of CA4DP on cardiomyocytes were discussed. We induced myocardial lesions by administration of CA4DP to rats and evaluated myocardial damage by histopathologic examination and electrocardiography. We evaluated blood pressure (BP) of CA4DP-treated rats and effects of CA4DP on cellular impedance-based contractility of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). The results revealed multifocal myocardial necrosis with a predilection for the interventricular septum and subendocardial regions of the apex of the left ventricular wall, injury of capillaries, morphological change of the ST junction, and QT interval prolongation. The histopathological profile of myocardial lesions suggested that CA4DP induced a lack of myocardial blood flow. CA4DP increased the diastolic BP and showed direct effects on hiPS-CMs. These results suggest that CA4DP induces dysfunction of small arteries and capillaries and has direct toxicity in cardiomyocytes. Therefore, it is thought that CA4DP induced capillary and myocardial injury due to collapse of the microcirculation in the myocardium. Moreover, the direct toxic effect of CA4DP on cardiomyocytes induced myocardial lesions in a coordinated manner.
    制备储备液(仅供参考)
    1 mg 5 mg 10 mg 20 mg 25 mg
    1 mM 3.1611 mL 15.8053 mL 31.6106 mL 63.2211 mL 79.0264 mL
    5 mM 0.6322 mL 3.1611 mL 6.3221 mL 12.6442 mL 15.8053 mL
    10 mM 0.3161 mL 1.5805 mL 3.1611 mL 6.3221 mL 7.9026 mL
    50 mM 0.0632 mL 0.3161 mL 0.6322 mL 1.2644 mL 1.5805 mL
    100 mM 0.0316 mL 0.1581 mL 0.3161 mL 0.6322 mL 0.7903 mL
    * Note: If you are in the process of experiment, it's need to make the dilution ratios of the samples. The dilution data of the sheet for your reference. Normally, it's can get a better solubility within lower of Concentrations.
    部分图片展示
    产品名称 产品编号 CAS编号 分子式 = 分子量 位单 联系QQ
    大戟因子L22; Euphorbia factor L22 CFN95338 1613700-09-6 C31H38O6 = 506.6 5mg QQ客服:2159513211
    甲基鼠李素; Rhamnazin CFN70409 552-54-5 C17H14O7 = 330.3 5mg QQ客服:215959384
    5-甲氧基莨菪亭; Umckalin CFN70362 43053-62-9 C11H10O5 = 222.2 5mg QQ客服:3257982914
    8-氧代黄连碱; 8-氧黄连碱; 8-Oxycoptisine CFN92158 19716-61-1 C19H13NO5 = 335.3 20mg QQ客服:1457312923

    信息支持


    公司简介
    订购流程
    付款方式
    退换货政策

    ChemFaces提供的产品仅用于科学研究使用,不用于诊断或治疗程序。

    联系方式


    电机:027-84237783
    传真:027-84254680
    在线QQ: 1413575084
    E-Mail:manager@chemfaces.com

    湖北省武汉沌口经济技术开区车城南路83号1号楼第三层厂房


    ChemFaces为科学家,科研人员与企业提供快速的产品递送。我们通过瑞士SGS ISO 9001:2008质量体系认证天然化合物与对照品的研发和生产